Learning Bayesian Models with R
暫譯: 使用 R 學習貝葉斯模型

Dr. Hari M. Koduvely

買這商品的人也買了...

商品描述

Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems

About This Book

  • Understand the principles of Bayesian Inference with less mathematical equations
  • Learn state-of-the art Machine Learning methods
  • Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide

Who This Book Is For

This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R.

What You Will Learn

  • Set up the R environment
  • Create a classification model to predict and explore discrete variables
  • Get acquainted with Probability Theory to analyze random events
  • Build Linear Regression models
  • Use Bayesian networks to infer the probability distribution of decision variables in a problem
  • Model a problem using Bayesian Linear Regression approach with the R package BLR
  • Use Bayesian Logistic Regression model to classify numerical data
  • Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing

In Detail

Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results.

Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R.

Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter.

The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks.

Style and approach

The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

商品描述(中文翻譯)

**成為使用 R 的貝葉斯機器學習方法專家,並應用於解決現實世界的大數據問題**

## 本書介紹

- 理解貝葉斯推斷的原則,並減少數學方程式的使用
- 學習最先進的機器學習方法
- 通過這本逐步指南,熟悉深度學習和大數據框架的最新進展

## 本書適合誰

本書適合希望使用 R 建立基於貝葉斯的系統並在日常模型和項目中實施的統計學家、分析師和數據科學家。主要針對參與高級分析應用開發的數據科學家和軟體工程師。為了理解本書,擁有基本的概率論和分析知識,以及對編程語言 R 的一些熟悉將會很有幫助。

## 您將學到什麼

- 設置 R 環境
- 創建分類模型以預測和探索離散變量
- 熟悉概率論以分析隨機事件
- 建立線性回歸模型
- 使用貝葉斯網絡推斷問題中決策變量的概率分佈
- 使用 R 套件 BLR 以貝葉斯線性回歸方法建模問題
- 使用貝葉斯邏輯回歸模型對數據進行分類
- 使用 R 中的 MapReduce 程序和雲計算對大規模數據集進行貝葉斯推斷

## 詳細內容

貝葉斯推斷提供了一個統一的框架,以處理在使用機器學習模型從數據中學習模式時所面臨的各種不確定性,並用於預測未來觀察。然而,由於涉及的數學處理程度,對於數據科學從業者來說,學習和實施貝葉斯模型並不容易。此外,將貝葉斯方法應用於現實世界的問題需要高計算資源。隨著計算技術的最新進展以及 R 中可用的多個開源套件,貝葉斯建模在當今的實際應用中變得更加可行。因此,所有數據科學家和工程師理解貝葉斯方法並在其項目中應用它們以獲得更好的結果將是有利的。

《使用 R 學習貝葉斯模型》首先為您提供貝葉斯機器學習模型及其實現的 R 套件的全面介紹。它從概率論和 R 編程的基本概念開始,適合對該主題不熟悉的讀者。然後,本書涵蓋了一些重要的機器學習方法,包括使用貝葉斯推斷和 R 實現的監督學習和非監督學習。

每一章都以非常簡單的方式開始對所解釋方法的理論描述。接著,討論相關的 R 套件,並提供使用 UCI 機器學習資料庫中的數據集的插圖。每一章的結尾都有一些簡單的練習,讓您能夠實際體驗本章討論的概念和 R 套件。

最後幾章專注於該領域的最新發展,特別是深度學習,這使用了一類目前在人工智慧前沿的神經網絡模型。本書以貝葉斯方法在大數據上應用的結論,使用 Hadoop 和 Spark 框架。

## 風格與方法

本書首先以簡單的語言對貝葉斯模型進行理論描述,然後詳細介紹其在 R 套件中的實現。每一章都有使用 UCI 機器學習資料庫中的數據集的貝葉斯模型及相應 R 套件的插圖。每一章還包含足夠的練習,讓您能夠獲得更多的實踐經驗。