Bayesian Filtering and Smoothing
暫譯: 貝葉斯過濾與平滑技術

Särkkä, Simo, Svensson, Lennart

  • 出版商: Cambridge
  • 出版日期: 2023-06-15
  • 售價: $1,940
  • 貴賓價: 9.5$1,843
  • 語言: 英文
  • 頁數: 430
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1108926649
  • ISBN-13: 9781108926645
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

商品描述(中文翻譯)

現在已經是第二版,本書以易於理解的方式呈現了對非線性狀態空間模型的最先進過濾、平滑和參數估計算法的統一貝葉斯處理。該書專注於離散時間狀態空間模型,並仔細介紹了與最佳過濾和平滑相關的基本概念。特別是,它涵蓋了一系列高效的非線性高斯過濾和平滑算法,以及基於蒙地卡羅的算法。這一更新版新增了幾個章節,內容包括構建實際系統的狀態空間模型、連續時間狀態空間模型的離散化、高斯過濾的啟用近似、後驗線性化過濾及相應的平滑器。關鍵主題的涵蓋範圍擴展,包括擴展卡爾曼過濾和平滑以及參數估計。本書的實用算法方法僅假設適度的數學先備知識,適合研究生和高年級本科生。書中包含許多示例,並提供了可在線獲取的 Matlab 和 Python 代碼,使讀者能夠在自己的項目中實現這些算法。

最後瀏覽商品 (20)