RECENT ADVANCES IN DATA MINING OF ENTERPRISE DATA: ALGORITHMS AND APPLICATIONS
暫譯: 企業數據挖掘的最新進展:演算法與應用
Evangelos Triantaphyllou, T Warren Liao
- 出版商: World Scientific Pub
- 出版日期: 2008-02-01
- 售價: $11,130
- 貴賓價: 9.5 折 $10,574
- 語言: 英文
- 頁數: 786
- 裝訂: Hardcover
- ISBN: 981277985X
- ISBN-13: 9789812779854
-
相關分類:
Algorithms-data-structures、Data-mining
海外代購書籍(需單獨結帳)
商品描述
The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as enterprise data . The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making.
Contents:
- Enterprise Data Mining: A Review and Research Directions (T W Liao);
- Application and Comparison of Classification Techniques in Controlling Credit Risk (L Yu et al.);
- Predictive Classification with Imbalanced Enterprise Data (S Daskalaki et al.);
- Data Mining Applications of Process Platform Formation for High Variety Production (J Jiao & L Zhang);
- Multivariate Control Charts from a Data Mining Perspective (G C Porzio & G Ragozini);
- Maintenance Planning Using Enterprise Data Mining (L P Khoo et al.);
- Mining Images of Cell-Based Assays (P Perner);
- Support Vector Machines and Applications (T B Trafalis & O O Oladunni);
- A Survey of Manifold-Based Learning Methods (X Huo et al.); and other papers.
商品描述(中文翻譯)
新興的資料探勘領域的主要目標是分析大型且複雜的數據集。一些非常重要的數據集可能源自商業和工業活動。這類數據被稱為企業數據 (enterprise data)。這些數據集的共同特徵是分析師希望對其進行分析,以設計出更具成本效益的策略,來優化某種性能指標,例如縮短生產時間、提高質量、消除浪費或最大化利潤。這類數據可能描述製造環境中的不同排程情境、某個過程的質量控制、機器或過程運行中的故障診斷、對申請者發放信用時的風險分析、製造系統中的供應鏈管理,或與商業相關的決策數據。
內容:
- 企業數據探勘:回顧與研究方向 (T W Liao);
- 控制信用風險的分類技術應用與比較 (L Yu et al.);
- 不平衡企業數據的預測分類 (S Daskalaki et al.);
- 高多樣性生產的過程平台形成的資料探勘應用 (J Jiao & L Zhang);
- 從資料探勘的角度看多變量控制圖 (G C Porzio & G Ragozini);
- 使用企業數據探勘的維護規劃 (L P Khoo et al.);
- 細胞基因檢測影像的探勘 (P Perner);
- 支持向量機及其應用 (T B Trafalis & O O Oladunni);
- 基於流形的學習方法調查 (X Huo et al.);
- 及其他論文。