Analytic Curve Frequency-Sweeping Stability Tests for Systems with Commensurate Delays (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 具有相容延遲的系統之分析曲線頻率掃描穩定性測試(電氣與計算機工程系列)

Xu-Guang Li

  • 出版商: Springer
  • 出版日期: 2015-04-21
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 148
  • 裝訂: Paperback
  • ISBN: 3319157167
  • ISBN-13: 9783319157160
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In this brief the authors establish a new frequency-sweeping framework to solve the complete stability problem for time-delay systems with commensurate delays. The text describes an analytic curve perspective which allows a deeper understanding of spectral properties focusing on the asymptotic behavior of the characteristic roots located on the imaginary axis as well as on properties invariant with respect to the delay parameters. This asymptotic behavior is shown to be related by another novel concept, the dual Puiseux series which helps make frequency-sweeping curves useful in the study of general time-delay systems. The comparison of Puiseux and dual Puiseux series leads to three important results:

  • an explicit function of the number of unstable roots simplifying analysis and design of time-delay systems so that to some degree they may be dealt with as finite-dimensional systems;
  • categorization of all time-delay systems into three types according to their ultimate stability properties; and
  • a simple frequency-sweeping criterion allowing asymptotic behavior analysis of critical imaginary roots for all positive critical delays by observation.

Academic researchers and graduate students interested in time-delay systems and practitioners working in a variety of fields – engineering, economics and the life sciences involving transfer of materials, energy or information which are inherently non-instantaneous, will find the results presented here useful in tackling some of the complicated problems posed by delays.

商品描述(中文翻譯)

在這篇簡報中,作者建立了一個新的頻率掃描框架,以解決具有相應延遲的時間延遲系統的完整穩定性問題。文本描述了一種分析曲線的視角,這使得對光譜特性的深入理解成為可能,重點關注位於虛軸上的特徵根的漸近行為以及與延遲參數無關的性質。這種漸近行為被另一個新概念——雙重 Puiseux 級數所關聯,這有助於使頻率掃描曲線在一般時間延遲系統的研究中變得有用。Puiseux 級數和雙重 Puiseux 級數的比較導致了三個重要結果:

- 一個不穩定根數量的顯式函數,簡化了時間延遲系統的分析和設計,使其在某種程度上可以視為有限維系統;
- 根據其最終穩定性質將所有時間延遲系統分類為三種類型;
- 一個簡單的頻率掃描標準,允許通過觀察對所有正的臨界延遲進行臨界虛根的漸近行為分析。

對於對時間延遲系統感興趣的學術研究者和研究生,以及在各種領域工作的實務者——包括工程、經濟學和涉及材料、能量或信息傳遞的生命科學,這些傳遞本質上是非瞬時的,將會發現這裡呈現的結果對於解決延遲所帶來的一些複雜問題是有幫助的。