Sequential Bifurcation Trees to Chaos in Nonlinear Time-Delay Systems
暫譯: 非線性時間延遲系統中的序列分岔樹與混沌
Xing, Siyuan, Luo, Albert C. J.
- 出版商: Morgan & Claypool
- 出版日期: 2020-09-11
- 售價: $1,450
- 貴賓價: 9.5 折 $1,378
- 語言: 英文
- 頁數: 87
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1681739429
- ISBN-13: 9781681739427
海外代購書籍(需單獨結帳)
相關主題
商品描述
In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.
The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems.
商品描述(中文翻譯)
在本書中,呈現了非線性動態系統中週期運動到混沌的分岔樹的全球序列情境,以便更好地理解從一個週期運動到另一個週期運動的全球行為和運動轉換。考慮一個一維(1-D)時間延遲的非線性動態系統作為範例,展示如何確定週期運動到混沌的分岔樹的全球序列情境。所有穩定和不穩定的週期運動都可以在分岔樹上確定。特別是,分岔樹上的不穩定週期運動無法通過傳統的分析方法獲得,而這些不穩定的週期運動和混沌可以通過特定的控制策略來獲得。
在這樣的一維時間延遲系統中,序列週期運動是半解析地獲得的,並且通過特徵值分析確定相應的穩定性和分岔。每個特定週期運動到混沌的分岔樹都詳細呈現。分岔樹的出現和消失由鞍點-節點分岔決定,而級聯的週期加倍週期解則由週期加倍分岔決定。從有限的傅立葉級數中,獲得了全球分岔樹上週期運動的諧波幅度和諧波相位,以進行頻率分析。對於全球分岔樹中的複雜週期運動,提供了週期運動的數值示例。呈現了一維延遲非線性動態系統的豐富動態。這種週期運動到混沌的全球序列運動存在於非線性動態系統中。頻率-幅度分析可用於重建週期運動的解析表達式,這可以用於動態系統中的運動控制。