Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues (Texts in Applied Mathematics, 31) 2nd ed. 2020 版本
暫譯: 馬可夫鏈:吉布斯場、蒙地卡羅模擬與排隊(應用數學系列,31)第二版 2020 年
Brémaud, Pierre
- 出版商: Springer
- 出版日期: 2021-05-24
- 售價: $2,670
- 貴賓價: 9.5 折 $2,537
- 語言: 英文
- 頁數: 557
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030459845
- ISBN-13: 9783030459840
-
其他版本:
Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues (Texts in Applied Mathematics, 31) 2nd ed. 2020 版本(Hardcover )
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,485Beautiful Data: The Stories Behind Elegant Data Solutions (Paperback)
-
$3,770$3,582 -
$4,550$4,323 -
$3,500$3,325 -
$1,260$1,235 -
$2,980$2,831 -
$1,760$1,672 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$2,250$2,138 -
$7,270$6,907 -
$1,680$1,646 -
$1,450Introduction to Complex Variables and Applications (Paperback)
-
$2,560$2,432 -
$2,850$2,708 -
$2,040$1,938
相關主題
商品描述
Preface.- 1 Probability Review.- 2 Discrete-Time Markov Chains.- 3 Recurrence and Ergodicity.- 4 Long-Run Behavior.- 5 Discrete-Time Renewal Theory.- 6 Absorption and Passage Times.- 7 Lyapunov Functions and Martingales.- 8 Random Walks on Graphs.- 9 Convergence Rates.- 10 Markov Fields on Graphs.- 11 Monte Carlo Markov Chains.- 12 Non-homogeneous Markov Chains.- 13 Continuous-Time Markov Chains.- 14 Markovian Queueing Theory.- Appendices.- Bibliography.- Index.
商品描述(中文翻譯)
前言.- 1 機率回顧.- 2 離散時間馬可夫鏈.- 3 重複性與遍歷性.- 4 長期行為.- 5 離散時間更新理論.- 6 吸收與通過時間.- 7 Lyapunov 函數與馬丁蓮.- 8 圖上的隨機漫步.- 9 收斂速率.- 10 圖上的馬可夫場.- 11 蒙地卡羅馬可夫鏈.- 12 非齊次馬可夫鏈.- 13 連續時間馬可夫鏈.- 14 馬可夫排隊理論.- 附錄.- 參考文獻.- 索引.
作者簡介
Pierre Brémaud graduated from the École Polytechnique and obtained his Doctorate in Mathematics from the University of Paris VI and his PhD from the department of Electrical Engineering and Computer Science at the University of California, Berkeley. He is a major contributor to the theory of stochastic processes and their applications, and has authored or co-authored several reference books and textbooks.
作者簡介(中文翻譯)
皮埃爾·布雷莫(Pierre Brémaud)畢業於法國高等工藝學院(École Polytechnique),並在巴黎第六大學(University of Paris VI)獲得數學博士學位,隨後在加州大學伯克利分校(University of California, Berkeley)的電機工程與計算機科學系獲得博士學位。他是隨機過程理論及其應用的重要貢獻者,並著有或合著多本參考書籍和教科書。