Practical Machine Learning with R
暫譯: R 實用機器學習
Jeyaraman, Brindha Priyadarshini, Olsen, Ludvig Renbo, Wambugu, Monicah
- 出版商: Packt Publishing
- 出版日期: 2019-08-30
- 售價: $1,670
- 貴賓價: 9.5 折 $1,587
- 語言: 英文
- 頁數: 416
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838550135
- ISBN-13: 9781838550134
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way.
Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them.
By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it.
- Define a problem that can be solved by training a machine learning model
- Obtain, verify and clean data before transforming it into the correct format for use
- Perform exploratory analysis and extract features from data
- Build models for neural net, linear and non-linear regression, classification, and clustering
- Evaluate the performance of a model with the right metrics
- Implement a classification problem using the neural net package
- Employ a decision tree using the random forest library
- Gain a comprehensive overview of different machine learning techniques
- Explore various methods for selecting a particular algorithm
- Implement a machine learning project from problem definition through to the final model
商品描述(中文翻譯)
隨著每時每刻都在產生大量數據,企業需要能夠快速且重複地對數據進行複雜數學計算的應用程式。透過機器學習技術和 R 語言,您可以輕鬆且高效地開發這類應用程式。
《實用機器學習與 R》一書首先幫助您掌握機器學習方法的基本概念,同時強調這些方法的運作原理及原因。您將了解如何在實踐中運用這些演算法,而不僅僅是專注於數學推導。隨著您從一章進展到另一章,您將獲得在 R 中構建機器學習解決方案的實作經驗。接下來,使用 R 套件如 rpart、隨機森林(random forest)和鏈式方程多重插補(MICE),您將學習實現包括神經網路分類器、決策樹以及線性和非線性回歸等演算法。隨著書籍的深入,您將探討各種監督式和非監督式學習方法的機器學習技術。此外,您還將獲得有關數據集劃分及評估每個模型結果的機制的見解,並能夠進行比較。
在本書結束時,您將在解決商業問題方面獲得專業知識,從形成良好的問題陳述開始,選擇最合適的模型來解決您的問題,然後確保不會過度訓練模型。
- 定義可以透過訓練機器學習模型來解決的問題
- 在將數據轉換為正確格式以供使用之前,獲取、驗證和清理數據
- 執行探索性分析並從數據中提取特徵
- 構建神經網路、線性和非線性回歸、分類和聚類的模型
- 使用正確的指標評估模型的性能
- 使用神經網路套件實現分類問題
- 使用隨機森林庫實現決策樹
- 獲得不同機器學習技術的全面概述
- 探索選擇特定演算法的各種方法
- 從問題定義到最終模型實現一個機器學習專案