Supervised Learning with Python: Concepts and Practical Implementation Using Python
暫譯: 使用 Python 的監督式學習:概念與實務實現

Verdhan, Vaibhav

  • 出版商: Apress
  • 出版日期: 2020-10-08
  • 售價: $2,050
  • 貴賓價: 9.5$1,948
  • 語言: 英文
  • 頁數: 372
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484261550
  • ISBN-13: 9781484261552
  • 相關分類: Python程式語言
  • 相關翻譯: Python監督學習 (簡中版)
  • 海外代購書籍(需單獨結帳)

商品描述

Gain a thorough understanding of supervised learning algorithms by developing use cases with Python. You will study supervised learning concepts, Python code, datasets, best practices, resolution of common issues and pitfalls, and practical knowledge of implementing algorithms for structured as well as text and images datasets.

You'll start with an introduction to machine learning, highlighting the differences between supervised, semi-supervised and unsupervised learning. In the following chapters you'll study regression and classification problems, mathematics behind them, algorithms like Linear Regression, Logistic Regression, Decision Tree, KNN, Na ve Bayes, and advanced algorithms like Random Forest, SVM, Gradient Boosting and Neural Networks. Python implementation is provided for all the algorithms. You'll conclude with an end-to-end model development process including deployment and maintenance of the model.

 

After reading Supervised Learning with Python you'll have a broad understanding of supervised learning and its practical implementation, and be able to run the code and extend it in an innovative manner.

 


What You'll Learn

  • Review the fundamental building blocks and concepts of supervised learning using Python
  • Develop supervised learning solutions for structured data as well as text and images
  • Solve issues around overfitting, feature engineering, data cleansing, and cross-validation for building best fit models
  • Understand the end-to-end model cycle from business problem definition to model deployment and model maintenance
  • Avoid the common pitfalls and adhere to best practices while creating a supervised learning model using Python

Who This Book Is For
Data scientists or data analysts interested in best practices and standards for supervised learning, and using classification algorithms and regression techniques to develop predictive models.

商品描述(中文翻譯)

獲得對監督式學習演算法的深入理解,通過使用 Python 開發案例。您將學習監督式學習的概念、Python 代碼、數據集、最佳實踐、常見問題和陷阱的解決方案,以及在結構化數據、文本和圖像數據集上實現演算法的實用知識。

您將從機器學習的介紹開始,強調監督式學習、半監督式學習和非監督式學習之間的差異。在接下來的章節中,您將研究回歸和分類問題、其背後的數學、演算法如線性回歸 (Linear Regression)、邏輯回歸 (Logistic Regression)、決策樹 (Decision Tree)、KNN、朴素貝葉斯 (Naive Bayes),以及隨機森林 (Random Forest)、支持向量機 (SVM)、梯度提升 (Gradient Boosting) 和神經網絡 (Neural Networks) 等進階演算法。所有演算法都提供了 Python 實現。您將以端到端模型開發過程作結,包括模型的部署和維護。

閱讀《使用 Python 的監督式學習》後,您將對監督式學習及其實際應用有廣泛的理解,並能夠運行代碼並以創新的方式擴展它。

您將學到的內容:

- 使用 Python 回顧監督式學習的基本構建塊和概念
- 為結構化數據、文本和圖像開發監督式學習解決方案
- 解決過擬合、特徵工程、數據清理和交叉驗證等問題,以建立最佳擬合模型
- 理解從業務問題定義到模型部署和模型維護的端到端模型週期
- 在使用 Python 創建監督式學習模型時,避免常見陷阱並遵循最佳實踐

本書適合對監督式學習的最佳實踐和標準感興趣的數據科學家或數據分析師,以及使用分類演算法和回歸技術開發預測模型的人士。

作者簡介

Vaibhav Verdhan has 12+ years of experience in Data Science, Machine Learning and Artificial Intelligence. An MBA with engineering background, he is a hands-on technical expert with acumen to assimilate and analyse data. He has led multiple engagements in ML and AI across geographies and across retail, telecom, manufacturing, energy and utilities domains. Currently he resides in Ireland with his family and is working as a Principal Data Scientist. When he is not working, he enjoys to read, direct plays, write poems and spend time with his family.

作者簡介(中文翻譯)

**Vaibhav Verdhan** 擁有超過 12 年的數據科學、機器學習和人工智慧經驗。他擁有工程背景的 MBA 學位,是一位實務操作的技術專家,具備整合和分析數據的能力。他在機器學習和人工智慧領域領導了多個跨地區的專案,涵蓋零售、電信、製造、能源和公用事業等領域。目前,他與家人居住在愛爾蘭,擔任首席數據科學家。當他不在工作時,他喜歡閱讀、導演話劇、寫詩以及與家人共度時光。