Effective Amazon Machine Learning
Alexis Perrier
- 出版商: Packt Publishing
- 出版日期: 2017-04-28
- 定價: $1,650
- 售價: 6.0 折 $990
- 語言: 英文
- 頁數: 306
- 裝訂: Paperback
- ISBN: 1785883232
- ISBN-13: 9781785883231
-
相關分類:
Machine Learning
立即出貨 (庫存 < 3)
相關主題
商品描述
Key Features
- Create great machine learning models that combine the power of algorithms with interactive tools without worrying about the underlying complexity
- Learn the What's next? of machine learning―machine learning on the cloud―with this unique guide
- Create web services that allow you to perform affordable and fast machine learning on the cloud
Book Description
Predictive analytics is a complex domain requiring coding skills, an understanding of the mathematical concepts underpinning machine learning algorithms, and the ability to create compelling data visualizations. Following AWS simplifying Machine learning, this book will help you bring predictive analytics projects to fruition in three easy steps: data preparation, model tuning, and model selection.
This book will introduce you to the Amazon Machine Learning platform and will implement core data science concepts such as classification, regression, regularization, overfitting, model selection, and evaluation. Furthermore, you will learn to leverage the Amazon Web Service (AWS) ecosystem for extended access to data sources, implement realtime predictions, and run Amazon Machine Learning projects via the command line and the Python SDK.
Towards the end of the book, you will also learn how to apply these services to other problems, such as text mining, and to more complex datasets.
What you will learn
- Learn how to use the Amazon Machine Learning service from scratch for predictive analytics
- Gain hands-on experience of key Data Science concepts
- Solve classic regression and classification problems
- Run projects programmatically via the command line and the Python SDK
商品描述(中文翻譯)
主要特點
- 無需擔心底層複雜性,創建結合演算法和互動工具的優秀機器學習模型
- 通過這本獨特的指南,了解機器學習在雲端的未來發展方向
- 創建允許您在雲端上進行經濟實惠且快速的機器學習的網絡服務
書籍描述
預測分析是一個複雜的領域,需要編程技能、對機器學習演算法背後的數學概念的理解,以及創建引人入勝的數據可視化的能力。在AWS簡化機器學習的基礎上,本書將幫助您通過三個簡單的步驟實現預測分析項目:數據準備、模型調整和模型選擇。
本書將向您介紹Amazon Machine Learning平台,並實現核心數據科學概念,如分類、回歸、正則化、過度擬合、模型選擇和評估。此外,您還將學習如何利用Amazon Web Service(AWS)生態系統來擴展對數據源的訪問權限,實現實時預測,並通過命令行和Python SDK運行Amazon Machine Learning項目。
在本書的最後,您還將學習如何將這些服務應用於其他問題,例如文本挖掘和更複雜的數據集。
您將學到什麼
- 從頭開始學習如何使用Amazon Machine Learning服務進行預測分析
- 獲得關鍵數據科學概念的實踐經驗
- 解決經典的回歸和分類問題
- 通過命令行和Python SDK以編程方式運行項目