Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python
暫譯: 快速學習 Keras 深度神經網絡:使用 Python 的現代深度學習捷徑方法
Jojo Moolayil
- 出版商: Apress
- 出版日期: 2018-12-07
- 定價: $1,575
- 售價: 8.0 折 $1,260
- 語言: 英文
- 頁數: 182
- 裝訂: Paperback
- ISBN: 1484242394
- ISBN-13: 9781484242391
-
相關分類:
DeepLearning、Python、程式語言
立即出貨 (庫存 < 4)
買這商品的人也買了...
相關主題
商品描述
Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras.
The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You’ll tackle one use case for regression and another for classification leveraging popular Kaggle datasets.
Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you’ll further hone your skills in deep learning and cover areas of active development and research in deep learning.
At the end of Learn Keras for Deep Neural Networks, you will have a thorough understanding of deep learning principles and have practical hands-on experience in developing enterprise-grade deep learning solutions in Keras.
What You’ll Learn
- Master fast-paced practical deep learning concepts with math- and programming-friendly abstractions.
- Design, develop, train, validate, and deploy deep neural networks using the Keras framework
- Use best practices for debugging and validating deep learning models
- Deploy and integrate deep learning as a service into a larger software service or product
- Extend deep learning principles into other popular frameworks
Who This Book Is For
Software engineers and data engineers with basic programming skills in any language and who are keen on exploring deep learning for a career move or an enterprise project.
商品描述(中文翻譯)
學習、理解並實現深度神經網絡,採用數學和編程友好的方法,使用 Keras 和 Python。本書專注於開發監督式學習算法的端到端方法,涵蓋回歸和分類,並以實際的商業案例在 Keras 中實現。
整本書分為三個部分,每個部分包含兩個章節。第一部分為您準備所有必要的基礎知識,以便開始深度學習。第一章介紹深度學習的世界及其與機器學習的區別,深度學習框架的選擇,以及 Keras 生態系統。您將探討一個可以通過深度神經網絡的監督式學習算法解決的真實商業問題。您將針對回歸處理一個案例,並利用流行的 Kaggle 數據集處理另一個分類案例。
接下來,您將看到深度學習中一個有趣且具挑戰性的部分:超參數調整;這將幫助您在構建穩健的深度學習應用程序時進一步改善模型。最後,您將進一步磨練您的深度學習技能,並涵蓋深度學習中的活躍開發和研究領域。
在《Learn Keras for Deep Neural Networks》的結尾,您將對深度學習原則有透徹的理解,並擁有在 Keras 中開發企業級深度學習解決方案的實際動手經驗。
您將學到的內容:
- 掌握快速實用的深度學習概念,並使用數學和編程友好的抽象。
- 使用 Keras 框架設計、開發、訓練、驗證和部署深度神經網絡。
- 使用最佳實踐來調試和驗證深度學習模型。
- 將深度學習作為服務部署並整合到更大的軟體服務或產品中。
- 將深度學習原則擴展到其他流行框架中。
本書適合對象:
具備任何語言基本編程技能的軟體工程師和數據工程師,並希望探索深度學習以進行職業轉型或企業項目。