Deep Learning: 2 Manuscripts - Deep Learning With Keras And Convolutional Neural Networks In Python
暫譯: 深度學習:兩篇手稿 - 使用 Keras 和 Python 中的卷積神經網絡進行深度學習
Frank Millstein
- 出版商: W. W. Norton
- 出版日期: 2018-03-21
- 售價: $1,160
- 貴賓價: 9.5 折 $1,102
- 語言: 英文
- 頁數: 260
- 裝訂: Paperback
- ISBN: 1986718271
- ISBN-13: 9781986718271
-
相關分類:
DeepLearning、Python、程式語言
無法訂購
商品描述
Deep Learning - 2 BOOK BUNDLE!!
Deep Learning with Keras
This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more.
Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio.
The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks.
Here Is a Preview of What You’ll Learn Here…
- The difference between deep learning and machine learning
- Deep neural networks
- Convolutional neural networks
- Building deep learning models with Keras
- Multi-layer perceptron network models
- Activation functions
- Handwritten recognition using MNIST
- Solving multi-class classification problems
- Recurrent neural networks and sequence classification
- And much more...
Convolutional Neural Networks in Python
This book covers the basics behind Convolutional Neural Networks by introducing you to this complex world of deep learning and artificial neural networks in a simple and easy to understand way. It is perfect for any beginner out there looking forward to learning more about this machine learning field. This book is all about how to use convolutional neural networks for various image, object and other common classification problems in Python. Here, we also take a deeper look into various Keras layer used for building CNNs we take a look at different activation functions and much more, which will eventually lead you to creating highly accurate models able of performing great task results on various image classification, object classification and other problems. Therefore, at the end of the book, you will have a better insight into this world, thus you will be more than prepared to deal with more complex and challenging tasks on your own.Here Is a Preview of What You’ll Learn In This Book…
- Convolutional neural networks structure
- How convolutional neural networks actually work
- Convolutional neural networks applications
- The importance of convolution operator
- Different convolutional neural networks layers and their importance
- Arrangement of spatial parameters
- How and when to use stride and zero-padding
- Method of parameter sharing
- Matrix multiplication and its importance
- Pooling and dense layers
- Introducing non-linearity relu activation function
- How to train your convolutional neural network models using backpropagation
- How and why to apply dropout
- CNN model training process
- How to build a convolutional neural network
- Generating predictions and calculating loss functions
- How to train and evaluate your MNIST classifier
- How to build a simple image classification CNN
- And much, much more!
Get this book bundle NOW and SAVE money!
商品描述(中文翻譯)
深度學習 - 2 本書套裝!!
深度學習與 Keras
本書將介紹各種監督式和非監督式的深度學習演算法,如多層感知器、線性回歸以及其他更先進的深度卷積神經網絡和遞迴神經網絡。您還將學習圖像處理、手寫識別、物體識別等更多內容。此外,您將熟悉像 LSTM 和 GAN 這樣的遞迴神經網絡,並探索處理序列數據,如時間序列、文本和音頻。本書絕對是您在這段與 Keras 的深度學習旅程中的最佳夥伴,幫助您掌握所需的基礎知識,以便進一步學習更先進的深度神經網絡。
這裡是您將學到的內容預覽…
- 深度學習與機器學習的區別
- 深度神經網絡
- 卷積神經網絡
- 使用 Keras 建立深度學習模型
- 多層感知器網絡模型
- 激活函數
- 使用 MNIST 進行手寫識別
- 解決多類別分類問題
- 遞迴神經網絡和序列分類
- 還有更多…
Python 中的卷積神經網絡
本書通過簡單易懂的方式介紹卷積神經網絡的基本概念,帶您進入這個複雜的深度學習和人工神經網絡的世界。這本書非常適合任何希望深入了解這一機器學習領域的初學者。本書主要講述如何在 Python 中使用卷積神經網絡解決各種圖像、物體及其他常見的分類問題。在這裡,我們還將深入探討用於構建 CNN 的各種 Keras 層,並研究不同的激活函數等,最終幫助您創建能夠在各種圖像分類、物體分類和其他問題上表現出色的高準確度模型。因此,在本書結束時,您將對這個領域有更深入的了解,並能夠獨立應對更複雜和具挑戰性的任務。
這裡是您將在本書中學到的內容預覽…
- 卷積神經網絡結構
- 卷積神經網絡的實際運作方式
- 卷積神經網絡的應用
- 卷積運算子的重要性
- 不同的卷積神經網絡層及其重要性
- 空間參數的排列
- 如何以及何時使用步幅和零填充
- 參數共享的方法
- 矩陣乘法及其重要性
- 池化層和密集層
- 介紹非線性 ReLU 激活函數
- 如何使用反向傳播訓練您的卷積神經網絡模型
- 如何以及為什麼應用 Dropout
- CNN 模型訓練過程
- 如何構建卷積神經網絡
- 生成預測和計算損失函數
- 如何訓練和評估您的 MNIST 分類器
- 如何構建一個簡單的圖像分類 CNN
- 還有更多更多!
立即獲得這本書套裝並節省金錢!