XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance
暫譯: XGBoost 在回歸預測建模與時間序列分析中的應用:學習如何在專家指導下構建、評估和部署預測模型
Deka, Partha Pritam, Weiner, Joyce, Zicari, Prof Roberto V.
- 出版商: Packt Publishing
- 出版日期: 2024-12-13
- 售價: $2,040
- 貴賓價: 9.5 折 $1,938
- 語言: 英文
- 頁數: 308
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180512305X
- ISBN-13: 9781805123057
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Master the art of predictive modeling with XGBoost and gain hands-on experience in building powerful regression, classification, and time series models using the XGBoost Python API
Key Features:
- Get up and running with this quick-start guide to building a classifier using XGBoost
- Get an easy-to-follow, in-depth explanation of the XGBoost technical paper
- Leverage XGBoost for time series forecasting by using moving average, frequency, and window methods
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
XGBoost offers a powerful solution for regression and time series analysis, enabling you to build accurate and efficient predictive models. In this book, the authors draw on their combined experience of 40+ years in the semiconductor industry to help you harness the full potential of XGBoost, from understanding its core concepts to implementing real-world applications.
As you progress, you'll get to grips with the XGBoost algorithm, including its mathematical underpinnings and its advantages over other ensemble methods. You'll learn when to choose XGBoost over other predictive modeling techniques, and get hands-on guidance on implementing XGBoost using both the Python API and scikit-learn API. You'll also get to grips with essential techniques for time series data, including feature engineering, handling lag features, encoding techniques, and evaluating model performance. A unique aspect of this book is the chapter on model interpretability, where you'll use tools such as SHAP, LIME, ELI5, and Partial Dependence Plots (PDP) to understand your XGBoost models. Throughout the book, you'll work through several hands-on exercises and real-world datasets.
By the end of this book, you'll not only be building accurate models but will also be able to deploy and maintain them effectively, ensuring your solutions deliver real-world impact.
What You Will Learn:
- Build a strong, intuitive understanding of the XGBoost algorithm and its benefits
- Implement XGBoost using the Python API for practical applications
- Evaluate model performance using appropriate metrics
- Deploy XGBoost models into production environments
- Handle complex datasets and extract valuable insights
- Gain practical experience in feature engineering, feature selection, and categorical encoding
Who this book is for:
This book is for data scientists, machine learning practitioners, analysts, and professionals interested in predictive modeling and time series analysis. Basic coding knowledge and familiarity with Python, GitHub, and other DevOps tools are required.
Table of Contents
- An Overview of Machine Learning, Classification, and Regression
- XGBoost Quick Start Guide with an Iris Data Case Study
- Demystifying the XGBoost Paper
- Adding On to the Quick Start - Switching Out the Dataset with a Housing Data Case Study
- Classification and Regression Trees, Ensembles, and Deep Learning Models - What's Best for Your Data?
- Data Cleaning, Imbalanced Data, and Other Data Problems
- Feature Engineering
- Encoding Techniques for Categorical Features
- Using XGBoost for Time Series Forecasting
- Model Interpretability, Explainability, and Feature Importance with XGBoost
- Metrics for Model Evaluations and Comparisons
- Managing a Feature Engineering Pipeline in Training and Inference
- Deploying Your XGBoost Model
商品描述(中文翻譯)
掌握使用 XGBoost 進行預測建模的藝術,並獲得使用 XGBoost Python API 建立強大回歸、分類和時間序列模型的實作經驗
主要特點:
- 使用這本快速入門指南,快速開始建立使用 XGBoost 的分類器
- 獲得易於理解的 XGBoost 技術論文深入解釋
- 通過使用移動平均、頻率和窗口方法,利用 XGBoost 進行時間序列預測
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
XGBoost 提供了一個強大的解決方案,用於回歸和時間序列分析,使您能夠建立準確且高效的預測模型。在這本書中,作者結合了超過 40 年的半導體行業經驗,幫助您充分利用 XGBoost 的潛力,從理解其核心概念到實現實際應用。
隨著學習的進展,您將掌握 XGBoost 算法,包括其數學基礎及其相對於其他集成方法的優勢。您將學會何時選擇 XGBoost 而非其他預測建模技術,並獲得使用 Python API 和 scikit-learn API 實現 XGBoost 的實作指導。您還將掌握時間序列數據的基本技術,包括特徵工程、處理延遲特徵、編碼技術和評估模型性能。本書的一個獨特方面是有關模型可解釋性的章節,您將使用 SHAP、LIME、ELI5 和部分依賴圖 (PDP) 等工具來理解您的 XGBoost 模型。在整本書中,您將通過多個實作練習和真實世界數據集進行學習。
在本書結束時,您不僅能夠建立準確的模型,還能有效地部署和維護它們,確保您的解決方案能夠產生實際影響。
您將學到的內容:
- 建立對 XGBoost 算法及其優勢的強大直觀理解
- 使用 Python API 實現 XGBoost 的實際應用
- 使用適當的指標評估模型性能
- 將 XGBoost 模型部署到生產環境
- 處理複雜數據集並提取有價值的見解
- 獲得特徵工程、特徵選擇和類別編碼的實作經驗
本書適合對象:
本書適合數據科學家、機器學習從業者、分析師以及對預測建模和時間序列分析感興趣的專業人士。需要具備基本的編程知識,並熟悉 Python、GitHub 和其他 DevOps 工具。
目錄:
- 機器學習、分類和回歸概述
- XGBoost 快速入門指南與鳶尾花數據案例研究
- 解密 XGBoost 論文
- 在快速入門的基礎上 - 用房屋數據案例研究替換數據集
- 分類和回歸樹、集成方法和深度學習模型 - 哪一種最適合您的數據?
- 數據清理、不平衡數據和其他數據問題
- 特徵工程
- 類別特徵的編碼技術
- 使用 XGBoost 進行時間序列預測
- XGBoost 的模型可解釋性、可解釋性和特徵重要性
- 模型評估和比較的指標
- 在訓練和推理中管理特徵工程管道
- 部署您的 XGBoost 模型