Data Mining: Practical Machine Learning Tools and Techniques with Java Implement
暫譯: 資料探勘:使用 Java 實作的實用機器學習工具與技術
Ian H. Witten, Eibe Frank
- 出版商: Morgan Kaufmann
- 出版日期: 1999-10-25
- 售價: $931
- 語言: 英文
- 頁數: 371
- 裝訂: Paperback
- ISBN: 1558605525
- ISBN-13: 9781558605527
-
相關分類:
Java 程式語言、Machine Learning、Data-mining
無法訂購
買這商品的人也買了...
-
$1,029Fundamentals of Data Structures in C++
-
$1,029Fundamentals of Data Structures in C
-
$640$608 -
$680$537 -
$2,660$2,527 -
$980$774 -
$970Introduction to Algorithms, 2/e
-
$1,150$1,127 -
$580$458 -
$880$695 -
$1,274Computer Architecture: A Quantitative Approach, 3/e(精裝本)
-
$1,029Operating System Concepts, 6/e (Windows XP Update)
-
$860$679 -
$1,030$1,009 -
$1,900$1,805 -
$780$741 -
$1,100$1,078 -
$760$600 -
$760$600 -
$590$466 -
$690$538 -
$750$638 -
$560$476 -
$480$379 -
$750$593
商品描述
Order This Book | Authors | Contents | Web-Enhanced | Related Titles
"This is a milestone in the synthesis of data mining, data analysis, information theory, and machine learning."
-Jim Gray, Microsoft Research
This book offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, youll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data miningincluding both tried-and-true techniques of the past and Java-based methods at the leading edge of contemporary research. If youre involved at any level in the work of extracting usable knowledge from large collections of data, this clearly written and effectively illustrated book will prove an invaluable resource.
Complementing the authors instruction is a fully functional platform-independent Java software system for machine learning, available for download. Apply it to the sample data sets provided to refine your data mining skills, apply it to your own data to discern meaningful patterns and generate valuable insights, adapt it for your specialized data mining applications, or use it to develop your own machine learning schemes.
Features
Helps you select appropriate approaches to particular problems and to compare and evaluate the results of different techniques.
Covers performance improvement techniques, including input preprocessing and combining output from different methods.
Comes with downloadable machine learning software: use it to master the techniques covered inside, apply it to your own projects, and/or customize it to meet special needs.
Ian H. Witten is professor of computer science at the University of Waikato in New Zealand. He is a fellow of the ACM and the Royal Society of New Zealand and a member of professional computing, information retrieval, and engineering associations in the UK, US, Canada, and New Zealand. He is coauthor of Managing Gigabytes (1999), The Reactive Keyboard (1992), and Text Compression (1990) and author of many journal articles and conference papers.
Eibe Frank is a researcher in the Machine Learning group at the University of Waikato. He holds a degree in computer science from the University of Karlsruhe in Germany and is the author of several papers, both presented at machine learning conferences and published in machine learning journals.
1. Whats It All About?
2. Input: Concepts, Instances, Attributes
3. Output: Knowledge Representation
4. Algorithms: The Basic Methods
5. Credibility: Evaluating Whats Been Learned
6. Implementations: Real Machine Learning Schemes
7. Moving On: Engineering The Input And Output
8. Nuts And Bolts: Machine Learning Algorithms In Java
9. Looking Forward
Check out the accompanying software at the author's site: http://www.cs.waikato.ac.nz/ml/weka
Teaching material
- Powerpoint slides
- A Powerpoint presentation containing all the figures from the book can be downloaded by clicking here.
- PDF slides
- Exams
- An example exam.
- An exam and the corresponding answers. [Available to instructors only; request a password from your academic sales representative]
- Assignments
- Quizzes
商品描述(中文翻譯)
訂購本書 | 作者 | 內容 | 網路增強 | 相關書籍
「這是數據挖掘、數據分析、信息理論和機器學習合成的一個里程碑。」
- Jim Gray,微軟研究院
本書提供了機器學習概念的全面基礎,以及在現實數據挖掘情境中應用機器學習工具和技術的實用建議。在書中,您將學到有關準備輸入、解釋輸出、評估結果以及成功數據挖掘核心的算法方法的所有知識,包括過去的成熟技術和基於Java的當代研究前沿方法。如果您在從大量數據中提取可用知識的工作中參與任何層面,這本清晰易懂且有效插圖的書籍將成為您不可或缺的資源。
補充作者的教學的是一個功能完善的獨立於平台的Java機器學習軟體系統,供下載使用。您可以將其應用於提供的示例數據集,以提升您的數據挖掘技能,將其應用於自己的數據以辨識有意義的模式並生成有價值的見解,或根據您的專業數據挖掘應用進行調整,甚至用來開發自己的機器學習方案。
特點
幫助您選擇適合特定問題的解決方案,並比較和評估不同技術的結果。
涵蓋性能改進技術,包括輸入預處理和結合來自不同方法的輸出。
附帶可下載的機器學習軟體:使用它來掌握書中涵蓋的技術,應用於自己的項目,和/或根據特殊需求進行自定義。
作者:
Ian H. Witten是新西蘭懷卡托大學的計算機科學教授。他是ACM和新西蘭皇家學會的會員,並且是英國、美國、加拿大和新西蘭的專業計算、信息檢索和工程協會的成員。他是《Managing Gigabytes》(1999年)、《The Reactive Keyboard》(1992年)和《Text Compression》(1990年)的共同作者,並且發表了許多期刊文章和會議論文。
Eibe Frank是新西蘭懷卡托大學機器學習小組的研究員。他擁有德國卡爾斯魯厄大學的計算機科學學位,並且是多篇在機器學習會議上發表和在機器學習期刊上發表的論文的作者。
目錄:
1. 這一切是關於什麼?
2. 輸入:概念、實例、屬性
3. 輸出:知識表示
4. 算法:基本方法
5. 可信度:評估學到的知識
6. 實現:真實的機器學習方案
7. 繼續前進:工程輸入和輸出
8. 基礎知識:Java中的機器學習算法
9. 展望未來
網路增強:
查看作者網站上的附帶軟體:
http://www.cs.waikato.ac.nz/ml/weka
教學材料
- Powerpoint簡報
- 包含書中所有圖形的Powerpoint簡報可通過點擊這裡下載。
- PDF簡報
- 第I部分
- 第II部分
- 第III部分
- 第IV部分
- 第V部分
- 第VI部分
- 第VII部分
- 考試
- 一個示例考試。
- 一個考試及其相應答案。[僅供教師使用;請向您的學術銷售代表索取密碼]
- 作業
- 作業1
- 作業2
- 作業3
- 作業4
- 作業5
- 作業6
- 小測驗
- 小測驗1
- 小測驗2
- 小測驗3
- 小測驗4
- 小測驗5
- 小測驗6
- 小測驗7
- 小測驗8
- 小測驗9
相關書籍:
- 數據庫
- 人工智慧