Machine Learning in Medicine - Cookbook Three (SpringerBriefs in Statistics)
暫譯: 醫學中的機器學習 - 食譜三 (SpringerBriefs in Statistics)
Ton J. J. Cleophas
- 出版商: Springer
- 出版日期: 2014-11-10
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 148
- 裝訂: Paperback
- ISBN: 3319121626
- ISBN-13: 9783319121628
-
相關分類:
Machine Learning、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
Unique features of the book involve the following.
1.This book is the third volume of a three volume series of cookbooks entitled "Machine Learning in Medicine - Cookbooks One, Two, and Three". No other self-assessment works for the medical and health care community covering the field of machine learning have been published to date.
2. Each chapter of the book can be studied without the need to consult other chapters, and can, for the readership's convenience, be downloaded from the internet. Self-assessment examples are available at extras.springer.com.
3. An adequate command of machine learning methodologies is a requirement for physicians and other health workers, particularly now, because the amount of medical computer data files currently doubles every 20 months, and, because, soon, it will be impossible for them to take proper data-based health decisions without the help of machine learning.
4. Given the importance of knowledge of machine learning in the medical and health care community, and the current lack of knowledge of it, the readership will consist of any physician and health worker.
5. The book was written in a simple language in order to enhance readability not only for the advanced but also for the novices.
6. The book is multipurpose, it is an introduction for ignorant, a primer for the inexperienced, and a self-assessment handbook for the advanced.
7. The book, was, particularly, written for jaded physicians and any other health care professionals lacking time to read the entire series of three textbooks.
8. Like the other two cookbooks it contains technical descriptions and self-assessment examples of 20 important computer methodologies for medical data analysis, and it, largely, skips the theoretical and mathematical background.
9. Information of theoretical and mathematical background of the methods described are displayed in a "notes" section at the end of each chapter.
10.Unlike traditional statistical methods, the machine learning methodologies are able to analyze big data including thousands of cases and hundreds of variables.
11. The medical and health care community is little aware of the multidimensional nature of current medical data files, and experimental clinical studies are not helpful to that aim either, because these studies, usually, assume that subgroup characteristics are unimportant, as long as the study is randomized. This is, of course, untrue, because any subgroup characteristic may be vital to an individual at risk.
12. To date, except for a three volume introductary series on the subject entitled "Machine Learning in Medicine Part One, Two, and Thee, 2013, Springer Heidelberg Germany" from the same authors, and the current cookbook series, no books on machine learning in medicine have been published.
13. Another unique feature of the cookbooks is that it was jointly written by two authors from different disciplines, one being a clinician/clinical pharmacologist, one being a mathematician/biostatistician.
14. The authors have also jointly been teaching at universities and institutions throughout Europe and the USA for the past 20 years.
15. The authors have managed to cover the field of medical data analysis in a nonmathematical way for the benefit of medical and health workers.
16. The authors already successfully published many statistics textbooks and self-assessment books, e.g., the 67 chapter textbook entitled "Statistics Applied to Clinical Studies 5th Edition, 2012, Springer Heidelberg Germany" with downloads of 62,826 copies.
17. The current cookbook makes use, in addition to SPSS statistical software, of various free calculators from the internet, as well as the Konstanz Information Miner (Knime), a widely approved free machine learning package, and the free Weka Data Mining package from New Zealand.
18. The above software packages with hundreds of nodes, the basic processing units including virtually all of the statistical and data mining methods, can be used not only for data analyses, but also for appropriate data storage.
19. The current cookbook shows, particularly, for those with little affinity to value tables, that data mining in the form of a visualization process is very well feasible, and often more revealing than traditional statistics.
20.The Knime and Weka data miners uses widely available excel data files.
21. In current clinical research prospective cohort studies are increasingly replacing the costly controlled clinical trials, and modern machine learning methodologies like probit and tobit regressions as well as neural networks, Bayesian networks, and support vector machines prove to better fit their analysis than traditional statistical methods do.
22. The current cookbook not only includes concise descriptions of standard machine learning methods, but also of more recent methods like the linear machine learning models using ordinal and loglinear regression.
23. Machine learning tends to increasingly use evolutionary operation methodologies. Also this subject has been covered.
24. All of the methods described have been applied in the authors' own research prior to this publication.
商品描述(中文翻譯)
本書的獨特特點包括以下幾點。
1. 本書是名為《醫學中的機器學習 - 食譜一、二、三》的三卷系列食譜的第三卷。迄今為止,尚未出版任何針對醫療和健康照護社群的自我評估作品,涵蓋機器學習領域。
2. 本書的每一章都可以獨立學習,無需參考其他章節,並且為了讀者的方便,可以從互聯網上下載。自我評估範例可在 extras.springer.com 獲得。
3. 醫生和其他健康工作者必須具備足夠的機器學習方法論知識,尤其是現在,因為目前醫療計算機數據檔案的數量每 20 個月就會翻倍,並且不久之後,沒有機器學習的幫助,他們將無法做出正確的基於數據的健康決策。
4. 鑒於醫療和健康照護社群對機器學習知識的重要性以及目前的知識缺乏,讀者將包括任何醫生和健康工作者。
5. 本書使用簡單的語言撰寫,以提高可讀性,不僅適合進階者,也適合初學者。
6. 本書用途多元,對於無知者是入門書,對於缺乏經驗者是基礎書,對於進階者則是自我評估手冊。
7. 本書特別為那些疲憊的醫生和其他缺乏時間閱讀整個三本教科書的健康照護專業人員撰寫。
8. 與其他兩本食譜一樣,本書包含 20 種重要的醫療數據分析計算方法的技術描述和自我評估範例,並且大幅跳過理論和數學背景。
9. 所描述方法的理論和數學背景資訊在每章的「註解」部分顯示。
10. 與傳統統計方法不同,機器學習方法能夠分析大數據,包括數千個案例和數百個變數。
11. 醫療和健康照護社群對當前醫療數據檔案的多維性認識不足,實驗臨床研究對此也無幫助,因為這些研究通常假設子群特徵不重要,只要研究是隨機的。這當然是不正確的,因為任何子群特徵對於有風險的個體可能是至關重要的。
12. 迄今為止,除了同一作者所著的三卷入門系列《醫學中的機器學習第一、二、三部分,2013,施普林格海德堡德國》和目前的食譜系列外,尚未出版任何關於醫學中機器學習的書籍。
13. 這些食譜的另一個獨特特點是由來自不同學科的兩位作者共同撰寫,一位是臨床醫生/臨床藥理學家,另一位是數學家/生物統計學家。
14. 這兩位作者在過去 20 年中也在歐洲和美國的多所大學和機構共同授課。
15. 這兩位作者成功地以非數學的方式涵蓋了醫療數據分析的領域,以造福醫療和健康工作者。
16. 這兩位作者已成功出版多本統計教科書和自我評估書籍,例如名為《應用於臨床研究的統計學第 5 版,2012,施普林格海德堡德國》的 67 章教科書,下載次數達 62,826 次。
17. 當前的食譜除了使用 SPSS 統計軟體外,還利用了來自互聯網的各種免費計算器,以及廣受認可的免費機器學習套件 Konstanz Information Miner (Knime) 和來自紐西蘭的免費 Weka 數據挖掘套件。
18. 上述軟體包擁有數百個節點,基本處理單元包括幾乎所有的統計和數據挖掘方法,不僅可用於數據分析,還可用於適當的數據存儲。
19. 當前的食譜特別顯示,對於那些對價值表不太感興趣的人來說,以可視化過程進行數據挖掘是非常可行的,並且往往比傳統統計更具啟發性。
20. Knime 和 Weka 數據挖掘工具使用廣泛可用的 Excel 數據檔案。
21. 在當前的臨床研究中,前瞻性隊列研究越來越多地取代了昂貴的對照臨床試驗,現代機器學習方法如 probit 和 tobit 回歸以及神經網絡、貝葉斯網絡和支持向量機在分析上比傳統統計方法更適合。
22. 當前的食譜不僅包括標準機器學習方法的簡明描述,還包括使用序數和對數線性回歸的線性機器學習模型等較新方法。
23. 機器學習越來越傾向於使用進化運算方法論。這一主題也已被涵蓋。
24. 所描述的所有方法在本出版物之前均已應用於作者自己的研究中。