Healthcare Analytics: From Data to Knowledge to Healthcare Improvement (Hardcover)
暫譯: 醫療分析:從數據到知識再到醫療改善 (精裝版)

  • 出版商: Wiley
  • 出版日期: 2016-08-01
  • 售價: $4,810
  • 貴賓價: 9.5$4,570
  • 語言: 英文
  • 頁數: 632
  • 裝訂: Hardcover
  • ISBN: 1118919394
  • ISBN-13: 9781118919392
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Features of statistical and operational research methods and tools being used to improve the healthcare industry

With a focus on cutting-edge approaches to the quickly growing field of healthcare, Healthcare Analytics: From Data to Knowledge to Healthcare Improvement provides an integrated and comprehensive treatment on recent research advancements in data-driven healthcare analytics in an effort to provide more personalized and smarter healthcare services. Emphasizing data and healthcare analytics from an operational management and statistical perspective, the book details how analytical methods and tools can be utilized to enhance healthcare quality and operational efficiency.

Organized into two main sections, Part I features biomedical and health informatics and specifically addresses the analytics of genomic and proteomic data; physiological signals from patient-monitoring systems; data uncertainty in clinical laboratory tests; predictive modeling; disease modeling for sepsis; and the design of cyber infrastructures for early prediction of epidemic events. Part II focuses on healthcare delivery systems, including system advances for transforming clinic workflow and patient care; macro analysis of patient flow distribution; intensive care units; primary care; demand and resource allocation; mathematical models for predicting patient readmission and postoperative outcome; physician–patient interactions; insurance claims; and the role of social media in healthcare. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement also features:

• Contributions from well-known international experts who shed light on new approaches in this growing area

• Discussions on contemporary methods and techniques to address the handling of rich and large-scale healthcare data as well as the overall optimization of healthcare system operations

• Numerous real-world examples and case studies that emphasize the vast potential of statistical and operational research tools and techniques to address the big data environment within the healthcare industry

• Plentiful applications that showcase analytical methods and tools tailored for successful healthcare systems modeling and improvement

The book is an ideal reference for academics and practitioners in operations research, management science, applied mathematics, statistics, business, industrial and systems engineering, healthcare systems, and economics. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement is also appropriate for graduate-level courses typically offered within operations research, industrial engineering, business, and public health departments.

HUI YANG, PhD, is Associate Professor in the Harold and Inge Marcus Department of Industrial and Manufacturing Engineering at The Pennsylvania State University. His research interests include sensor-based modeling and analysis of complex systems for process monitoring/control; system diagnostics/ prognostics; quality improvement; and performance optimization with special focus on nonlinear stochastic dynamics and the resulting chaotic, recurrence, self-organizing behaviors.

EVA K. LEE, PhD, is Professor in the H. Milton Stewart School of Industrial and Systems Engineering at the Georgia Institute of Technology, Director of the Center for Operations Research in Medicine and HealthCare, and Distinguished Scholar in Health System, Health Systems Institute at both Emory University School of Medicine and Georgia Institute of Technology. Her research interests include health-risk prediction; early disease prediction and diagnosis; optimal treatment strategies and drug delivery; healthcare outcome analysis and treatment prediction; public health and medical preparedness; large-scale healthcare/medical decision analysis and quality improvement; clinical translational science; and business intelligence and organization transformation.

商品描述(中文翻譯)

統計與運營研究方法及工具在改善醫療產業中的特點

本書《醫療分析:從數據到知識再到醫療改善》專注於快速成長的醫療領域的前沿方法,提供了對數據驅動的醫療分析最近研究進展的綜合性和全面性探討,旨在提供更個性化和智能化的醫療服務。本書從運營管理和統計的角度強調數據和醫療分析,詳細說明了如何利用分析方法和工具來提升醫療質量和運營效率。

本書分為兩個主要部分,第一部分涵蓋生物醫學和健康資訊學,特別針對基因組和蛋白質組數據的分析;來自病人監測系統的生理信號;臨床實驗室測試中的數據不確定性;預測建模;敗血症的疾病建模;以及早期預測疫情事件的網絡基礎設施設計。第二部分專注於醫療服務系統,包括轉變診所工作流程和病人護理的系統進展;病人流量分佈的宏觀分析;重症監護病房;初級護理;需求和資源分配;預測病人再入院和手術後結果的數學模型;醫生與病人之間的互動;保險索賠;以及社交媒體在醫療中的角色。《醫療分析:從數據到知識再到醫療改善》還包括:

• 來自知名國際專家的貢獻,闡明了這一不斷增長領域的新方法

• 討論當代方法和技術,以應對豐富且大規模的醫療數據處理以及整體優化醫療系統運營

• 許多現實世界的例子和案例研究,強調統計和運營研究工具及技術在醫療產業大數據環境中的巨大潛力

• 大量應用展示了針對成功醫療系統建模和改善的分析方法和工具

本書是運營研究、管理科學、應用數學、統計學、商業、工業與系統工程、醫療系統和經濟學領域的學術界和實務界的理想參考資料。《醫療分析:從數據到知識再到醫療改善》也適合在運營研究、工業工程、商業和公共衛生系所開設的研究生課程。

HUI YANG, PhD, 是賓夕法尼亞州立大學哈羅德與英格·馬庫斯工業與製造工程系的副教授。他的研究興趣包括基於傳感器的複雜系統建模與分析,用於過程監控/控制;系統診斷/預測;質量改善;以及性能優化,特別關注非線性隨機動力學及其導致的混沌、重複、自組織行為。

EVA K. LEE, PhD, 是喬治亞理工學院H. Milton Stewart工業與系統工程學院的教授,醫療與健康運營研究中心的主任,以及埃默里大學醫學院和喬治亞理工學院健康系統研究所的傑出學者。她的研究興趣包括健康風險預測;早期疾病預測和診斷;最佳治療策略和藥物傳遞;醫療結果分析和治療預測;公共健康和醫療準備;大規模醫療/醫學決策分析和質量改善;臨床轉化科學;以及商業智慧和組織轉型。