Regression Analysis with Python(Paperback)
暫譯: 使用 Python 進行迴歸分析(平裝本)

Luca Massaron, Alberto Boschetti

  • 出版商: Packt Publishing
  • 出版日期: 2016-02-29
  • 售價: $2,010
  • 貴賓價: 9.5$1,910
  • 語言: 英文
  • 頁數: 312
  • 裝訂: Paperback
  • ISBN: 1785286315
  • ISBN-13: 9781785286315
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

商品描述

Key Features

  • Become competent at implementing regression analysis in Python
  • Solve some of the complex data science problems related to predicting outcomes
  • Get to grips with various types of regression for effective data analysis

Book Description

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

What you will learn

  • Format a dataset for regression and evaluate its performance
  • Apply multiple linear regression to real-world problems
  • Learn to classify training points
  • Create an observation matrix, using different techniques of data analysis and cleaning
  • Apply several techniques to decrease (and eventually fix) any overfitting problem
  • Learn to scale linear models to a big dataset and deal with incremental data

About the Author

Luca Massaron is a data scientist and a marketing research director who is specialized in multivariate statistical analysis, machine learning, and customer insight with over a decade of experience in solving real-world problems and in generating value for stakeholders by applying reasoning, statistics, data mining, and algorithms. From being a pioneer of Web audience analysis in Italy to achieving the rank of a top ten Kaggler, he has always been very passionate about everything regarding data and its analysis and also about demonstrating the potential of datadriven knowledge discovery to both experts and non-experts. Favoring simplicity over unnecessary sophistication, he believes that a lot can be achieved in data science just by doing the essentials.

Alberto Boschetti is a data scientist, with an expertise in signal processing and statistics. He holds a Ph.D. in telecommunication engineering and currently lives and works in London. In his work projects, he faces daily challenges that span from natural language processing (NLP) and machine learning to distributed processing. He is very passionate about his job and always tries to stay updated about the latest developments in data science technologies, attending meet-ups, conferences, and other events.

Table of Contents

  1. Regression – The Workhorse of Data Science
  2. Approaching Simple Linear Regression
  3. Multiple Regression in Action
  4. Logistic Regression
  5. Data Preparation
  6. Achieving Generalization
  7. Online and Batch Learning
  8. Advanced Regression Methods
  9. Real-world Applications for Regression Models

商品描述(中文翻譯)

**主要特點**
- 熟練掌握在 Python 中實現迴歸分析
- 解決與預測結果相關的一些複雜數據科學問題
- 理解各種迴歸類型以進行有效的數據分析

**書籍描述**
迴歸是從示例數據中學習輸入與連續輸出之間關係的過程,這使得對新輸入進行預測成為可能。迴歸算法有很多種,本書的目的是解釋每組問題應該使用哪一種算法,以及如何為其準備現實世界的數據。通過本書,您將學會定義一個簡單的迴歸問題並評估其性能。本書將幫助您理解如何正確解析數據集、清理數據並創建最佳構建的輸出矩陣以進行迴歸。您將從一個簡單的迴歸算法開始,解決一些數據科學問題,然後逐步進入更複雜的算法。本書將使您能夠使用迴歸模型來預測結果並做出關鍵的商業決策。通過本書,您將獲得使用 Python 構建更快的線性模型的知識,並將結果應用於 Python 或您喜歡的任何計算機語言中。

**您將學到的內容**
- 格式化數據集以進行迴歸並評估其性能
- 將多元線性迴歸應用於現實世界的問題
- 學習如何分類訓練點
- 創建觀察矩陣,使用不同的數據分析和清理技術
- 應用多種技術來減少(並最終修正)任何過擬合問題
- 學習如何將線性模型擴展到大型數據集並處理增量數據

**關於作者**
**Luca Massaron** 是一位數據科學家和市場研究總監,專注於多變量統計分析、機器學習和客戶洞察,擁有超過十年的經驗,通過應用推理、統計、數據挖掘和算法來解決現實世界的問題並為利益相關者創造價值。從成為意大利網絡受眾分析的先驅到成為前十名的 Kaggler,他一直對數據及其分析充滿熱情,並致力於向專家和非專家展示數據驅動的知識發現的潛力。他偏好簡單而非不必要的複雜性,認為在數據科學中僅通過做必要的事情就能取得很大成就。

**Alberto Boschetti** 是一位數據科學家,專長於信號處理和統計學。他擁有電信工程的博士學位,目前居住和工作在倫敦。在他的工作項目中,他每天面臨的挑戰涵蓋自然語言處理(NLP)、機器學習到分佈式處理等領域。他對自己的工作充滿熱情,並始終努力保持對數據科學技術最新發展的了解,參加聚會、會議和其他活動。

**目錄**
1. 迴歸 - 數據科學的工作馬
2. 接近簡單線性迴歸
3. 多元迴歸的實踐
4. 邏輯迴歸
5. 數據準備
6. 實現泛化
7. 在線學習與批量學習
8. 進階迴歸方法
9. 迴歸模型的現實應用