Statistics for Data Science: Leverage the power of statistics for Data Analysis, Classification, Regression, Machine Learning, and Neural Networks
暫譯: 數據科學的統計學:利用統計的力量進行數據分析、分類、回歸、機器學習和神經網絡
James D. Miller
- 出版商: Packt Publishing
- 出版日期: 2017-11-20
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 286
- 裝訂: Paperback
- ISBN: 1788290674
- ISBN-13: 9781788290678
-
相關分類:
Data Science、Machine Learning、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
Get your statistics basics right before diving into the world of data science
About This Book
- No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs;
- Implement statistics in data science tasks such as data cleaning, mining, and analysis
- Learn all about probability, statistics, numerical computations, and more with the help of R programs
Who This Book Is For
This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful.
What You Will Learn
- Analyze the transition from a data developer to a data scientist mindset
- Get acquainted with the R programs and the logic used for statistical computations
- Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more
- Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis
- Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks
- Get comfortable with performing various statistical computations for data science programmatically
In Detail
Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on.
This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks.
By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.
Style and approach
Step by step comprehensive guide with real world examples
商品描述(中文翻譯)
在進入數據科學的世界之前,先掌握統計學的基礎
本書介紹
- 不需要取得統計學學位,閱讀本書即可為數據科學和實際應用建立堅實的統計基礎;
- 在數據清理、挖掘和分析等數據科學任務中實施統計學
- 在 R 程式的幫助下學習概率、統計、數值計算等知識
本書適合誰閱讀
本書適合那些希望進入數據科學領域的開發者,並尋求簡明的統計資訊,配合深入的程式和簡單的解釋。對 R 的基本操作會有所幫助。
您將學到什麼
- 分析從數據開發者到數據科學家思維的轉變
- 熟悉 R 程式及其在統計計算中使用的邏輯
- 理解數學概念,如方差、標準差、概率、矩陣計算等
- 學會在數據清理、挖掘和分析等數據科學任務中實施統計學
- 學習執行線性回歸、正則化、模型評估、提升、支持向量機(SVM)和神經網絡等任務所需的統計技術
- 熟悉以程式化方式執行各種統計計算以應用於數據科學
詳細內容
數據科學是一個不斷演變的領域,正以指數速度增長。數據科學包括從統計學、計算機科學以及最重要的機器學習、數據庫、數據可視化等領域提取的技術和理論。
本書帶您經歷統計學的整個旅程,從幾乎一無所知到能夠自如地使用各種統計方法來處理數據科學任務。它從簡單的統計學開始,然後轉向在數據科學算法中使用的統計方法。統計計算的 R 程式將清楚地解釋其邏輯。您將接觸到各種數學概念,如方差、標準差、概率、矩陣計算等。您將學習在數據清理、挖掘和分析等數據科學任務中實施統計學所需的知識。您將學習執行線性回歸、正則化、模型評估、提升、支持向量機(SVM)和神經網絡等任務所需的統計技術。
在本書結束時,您將能夠以程式化方式自如地執行各種統計計算以應用於數據科學。
風格與方法
逐步的綜合指南,配合實際案例