Principles of Data Science
暫譯: 數據科學原則
Sinan Ozdemir
- 出版商: Packt Publishing
- 出版日期: 2016-12-16
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 388
- 裝訂: Paperback
- ISBN: 1785887912
- ISBN-13: 9781785887918
-
相關分類:
Data Science
-
相關翻譯:
深入淺出數據科學 (簡中版)
買這商品的人也買了...
-
$1,620$1,539 -
$600$570 -
$650$585 -
$400$316 -
$780$616 -
$454零基礎入門學習 Python, 2/e
-
$450$356 -
$1,656Introduction to Machine Learning, 4/e (Hardcover)
-
$580$458 -
$690$587 -
$680$537 -
$1,400$1,330 -
$380$342 -
$500$395 -
$2,100$2,058 -
$599$473 -
$1,200$948 -
$890$703 -
$540$486 -
$540$529 -
$560$437 -
$680$537 -
$680$537 -
$580$452 -
$840$798
商品描述
Key Features
- Enhance your knowledge of coding with data science theory for practical insight into data science and analysis
- More than just a math class, learn how to perform real-world data science tasks with R and Python
- Create actionable insights and transform raw data into tangible value
Book Description
Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking―and answering―complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas.
With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.
What you will learn
- Get to know the five most important steps of data science
- Use your data intelligently and learn how to handle it with care
- Bridge the gap between mathematics and programming
- Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results
- Build and evaluate baseline machine learning models
- Explore the most effective metrics to determine the success of your machine learning models
- Create data visualizations that communicate actionable insights
- Read and apply machine learning concepts to your problems and make actual predictions
About the Author
Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own start-up, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams.
After completing the Fellowship at the Y Combinator accelerator, Sinan has spent most of his days working on his fast-growing company, while creating educational material for data science.
Table of Contents
- How to Sound Like a Data Scientist
- Types of Data
- The Five Steps of Data Science
- Basic Mathematics
- Impossible or Improbable – A Gentle Introduction to Probability
- Advanced Probability
- Basic Statistics
- Advanced Statistics
- Communicating Data
- How to Tell If Your Toaster Is Learning – Machine Learning Essentials
- Predictions Don't Grow on Trees – or Do They?
- Beyond the Essentials
- Case Studies
商品描述(中文翻譯)
**主要特點**
- 增強您對編程的知識,結合數據科學理論以獲得對數據科學和分析的實用見解
- 不僅僅是一門數學課,學習如何使用 R 和 Python 執行現實世界的數據科學任務
- 創造可行的見解,將原始數據轉化為具體價值
**書籍描述**
需要將您的編程技能轉化為有效的數據科學技能嗎?《數據科學原理》旨在幫助您將數學、編程和商業分析之間的關聯串聯起來。通過這本書,您將對於提出和回答有關數據的複雜和精細問題充滿信心,從抽象和原始的統計數據轉向可行的想法。
這本書以獨特的方式彌合數學和計算機科學之間的鴻溝,帶您走過整個數據科學流程。從清理和準備數據開始,學習有效的數據挖掘策略和技術,您將逐步建立起數據科學拼圖中每個部分如何相互配合的全面圖景。學習計算數學和統計的基本原理,以及當今數據科學家和分析師使用的一些偽代碼。您將掌握機器學習,發現幫助您控制和導航即使是最密集數據集的統計模型,並了解如何創建強大的可視化,以傳達您的數據所代表的意義。
**您將學到的內容**
- 了解數據科學的五個最重要步驟
- 智慧地使用您的數據,學習如何小心處理它
- 彌合數學和編程之間的鴻溝
- 學習概率、微積分,以及如何使用統計模型來控制和清理您的數據並推動可行的結果
- 建立和評估基準機器學習模型
- 探索最有效的指標以確定您的機器學習模型的成功
- 創建傳達可行見解的數據可視化
- 閱讀並將機器學習概念應用於您的問題並做出實際預測
**關於作者**
**Sinan Ozdemir** 是一位數據科學家、創業公司創始人和教育者,與他的狗 Charlie、貓 Euclid 和鬃獅蜥蜴 Fiero 一起生活在舊金山灣區。他在約翰霍普金斯大學學習純數學,然後轉向教育。他在約翰霍普金斯大學和通用組合學院進行數據科學講座多年,之後創立了自己的初創公司 Legion Analytics,該公司利用人工智慧和數據科學為企業銷售團隊提供支持。
在完成 Y Combinator 加速器的獎學金後,Sinan 大部分時間都在為他快速增長的公司工作,同時創建數據科學的教育材料。
**目錄**
1. 如何讓自己聽起來像數據科學家
2. 數據的類型
3. 數據科學的五個步驟
4. 基本數學
5. 不可能或不太可能 - 概率的溫和介紹
6. 高級概率
7. 基本統計
8. 高級統計
9. 數據傳達
10. 如何判斷您的烤麵包機是否在學習 - 機器學習基礎
11. 預測不會從樹上掉下來 - 還是會?
12. 超越基礎
13. 案例研究