Deterministic Global Optimization: An Introduction to the Diagonal Approach (SpringerBriefs in Optimization)
暫譯: 確定性全域最佳化:對角法入門(SpringerBriefs in Optimization)

Yaroslav D. Sergeyev, Dmitri E. Kvasov

  • 出版商: Springer
  • 出版日期: 2017-06-18
  • 售價: $2,490
  • 貴賓價: 9.5$2,366
  • 語言: 英文
  • 頁數: 136
  • 裝訂: Paperback
  • ISBN: 1493971972
  • ISBN-13: 9781493971978
  • 海外代購書籍(需單獨結帳)

商品描述

This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed. Theoretical considerations are illustrated through engineering applications. Extensive numerical testing of algorithms described in this book stretches the likelihood of establishing a link between mathematicians and practitioners. The authors conclude by describing applications and a generator of random classes of test functions with known local and global minima that is used in more than 40 countries of the world. This title serves as a starting point for students, researchers, engineers, and other professionals in operations research, management science, computer science, engineering, economics, environmental sciences, industrial and applied mathematics to obtain an overview of deterministic global optimization.   


商品描述(中文翻譯)

本書以集中介紹確定性全域最佳化開始,接著呈現來自該領域知名專家的新原創成果。探討了具有未知結構的多極值連續問題,這些問題的目標函數為Lipschitz函數,且在超區間上定義了具有第一個Lipschitz導數的函數。引入了一類使用多個Lipschitz常數的演算法,該演算法源自DIRECT(DIviding RECTangles)方法。這一新類別基於一種有效的策略,應用於搜尋域的劃分。此外,對於一維和多維情況下的無導數方法和使用第一導數的方法進行了調查。討論了非光滑和光滑的次要函數及加速技術,這些技術可以加速幾類全域最佳化方法,並舉例說明在全域最佳化演算法的數值測試中出現的應用和問題。理論考量通過工程應用進行說明。本書中描述的演算法經過廣泛的數值測試,增強了數學家與實務工作者之間建立聯繫的可能性。作者最後描述了應用及一個隨機測試函數類別生成器,該生成器具有已知的局部和全域最小值,並在全球超過40個國家使用。本書作為學生、研究人員、工程師及其他運籌學、管理科學、計算機科學、工程學、經濟學、環境科學、工業及應用數學專業人士了解確定性全域最佳化的起點。