Nonlinear Programming: Theory and Algorithms, 3/e (Hardcover)
暫譯: 非線性規劃:理論與演算法,第3版(精裝本)
Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty
- 出版商: Wiley
- 出版日期: 2006-04-01
- 售價: $6,350
- 貴賓價: 9.5 折 $6,033
- 語言: 英文
- 頁數: 872
- 裝訂: Hardcover
- ISBN: 0471486000
- ISBN-13: 9780471486008
-
相關分類:
R 語言、Algorithms-data-structures
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$680$537 -
$880$695 -
$880$695 -
$780$663 -
$680$578 -
$600$474 -
$650$507 -
$850$672 -
$550$468 -
$650$507 -
$520$442 -
$690$538 -
$680$537 -
$480$379 -
$720$569 -
$550$429 -
$550$435 -
$620$527 -
$4,950$4,851 -
$680$537 -
$290$226 -
$600$480 -
$1,488C++ GUI Programming with Qt 4, 2/e (Hardcover)
-
$390$308 -
$600$540
相關主題
商品描述
Description
COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED
Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition— addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction.
Concentration on the three major parts of nonlinear programming is provided:
- Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming
- Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions
- Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems
Important features of the Third Edition include:
- New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more
- Updated discussion and new applications in each chapter
- Detailed numerical examples and graphical illustrations
- Essential coverage of modeling and formulating nonlinear programs
- Simple numerical problems
- Advanced theoretical exercises
The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.
Table of Contents
Chapter 1 Introduction.
1.1 Problem Statement and Basic Definitions.
1.2 Illustrative Examples.
1.3 Guidelines for Model Construction.
Exercises.
Notes and References.
Part 1 Convex Analysis.
Chapter 2 Convex Sets.
2.1 Convex Hulls.
2.2 Closure and Interior of a Set.
2.3 Weierstrass's Theorem.
2.4 Separation and Support of Sets.
2.5 Convex Cones and Polarity.
2.6 Polyhedral Sets, Extreme Points, and Extreme Directions.
2.7 Linear Programming and the Simplex Method.
Exercises.
Notes and References.
Chapter 3 Convex Functions and Generalizations.
3.1 Definitions and Basic Properties.
3.2 Subgradients of Convex Functions.
3.3 Differentiable Convex Functions.
3.4 Minima and Maxima of Convex Functions.
3.5 Generalizations of Convex Functions.
Exercises.
Notes and References.
Part 2 Optimality Conditions and Duality.
Chapter 4 The Fritz John and Karush-Kuhn-Tucker Optimality Conditions.
4.1 Unconstrained Problems.
4.2 Problems Having Inequality Constraints.
4.3 Problems Having Inequality and Equality Constraints.
4.4 Second-Order Necessary and Sufficient Optimality Conditions for Constrained Problems.
Exercises.
Notes and References.
Chapter 5 Constraint Qualifications.
5.1 Cone of Tangents.
5.2 Other Constraint Qualifications.
5.3 Problems Having Inequality and Equality Constraints.
Exercises.
Notes and References.
Chapter 6 Lagrangian Duality and Saddle Point Optimality Conditions.
6.1 Lagrangian Dual Problem.
6.2 Duality Theorems and Saddle Point Optimality Conditions.
6.3 Properties of the Dual Function.
6.4 Formulating and Solving the Dual Problem
6.5 Getting the Primal Solution.
6.6 Linear and Quadratic Programs.
Exercises.
Notes and References.
Part 3 Algorithms and Their Convergence.
Chapter 7 The Concept of an Algorithm.
7.1 Algorithms and Algorithmic Maps.
7.2 Closed Maps and Convergence.
7.3 Composition of Mappings.
7.4 Comparison Among Algorithms.
Exercises.
Notes and References.
Chapter 8 Unconstrained Optimization.
8.1 Line Search Without Using Derivatives.
8.2 Line Search Using Derivatives.
8.3 Some Practical Line Search Methods.
8.4 Closedness of the Line Search Algorithmic Map.
8.5 Multidimensional Search Without Using Derivatives.
8.6 Multidimensional Search Using Derivatives.
8.7 Modification of Newton's Method: Levenberg-Marquardt and Trust Region Methods.
8.8 Methods Using Conjugate Directions: Quasi-Newton and Conjugate Gradient Methods.
8.9 Subgradient Optimization Methods.
Exercises.
Notes and References.
Chapter 9 Penalty and Barrier Functions.
9.1 Concept of Penalty Functions.
9.2 Exterior Penalty Function Methods.
9.3 Exact Absolute Value and Augmented Lagrangian Penalty Methods.
9.4 Barrier Function Methods.
9.5 Polynomial-Time Interior Point Algorithms for Linear Programming Based on a Barrier Function.
Exercises.
Notes and References.
Chapter 10 Methods of Feasible Directions.
10.1 Method of Zoutendijk.
10.2 Convergence Analysis of the Method of Zoutendijk.
10.3 Successive Linear Programming Approach.
10.4 Successive Quadratic Programming or Projected Lagrangian Approach.
10.5 Gradient Projection Method of Rosen.
10.6 Reduced Gradient Method of Wolfe and Generalized Reduced Gradient Method.
10.7 Convex-Simplex Method of Zangwill.
10.8 Effective First- and Second-Order Variants of the Reduced Gradient Method.
Exercises.
Notes and References.
Chapter 11 Linear Complementary Problem, and Quadratic, Separable, Fractional, and Geometric Programming.
1 1.1 Linear Complementary Problem.
1 1.2 Convex and Nonconvex Quadratic Programming: Global Optimization Approaches.
11.3 Separable Programming.
1 1.4 Linear Fractional Programming.
1 1.5 Geometric Programming.
Exercises.
Notes and References.
Appendix A Mathematical Review.
Appendix B Summary of Convexity, Optimality Conditions, and Duality.
Bibliography.
Index.
商品描述(中文翻譯)
**描述**
全面涵蓋非線性規劃理論與演算法,經過徹底修訂與擴充
《非線性規劃:理論與演算法》— 現在是 extensively updated 的第三版 — 解決在等式與不等式約束下優化目標函數的問題。許多現實問題因為目標函數的非線性特性和/或任何約束的非線性特性,無法充分表示為線性規劃。第三版以非線性規劃的一般介紹開始,並附有示例和模型建構的指導。
專注於非線性規劃的三個主要部分:
- 凸分析,討論凸集合的拓撲性質、凸集合的分離與支持、多面體集合、極點與極方向以及線性規劃
- 最適性條件與對偶性,涵蓋經典的 Fritz John (FJ) 和 Karush-Kuhn-Tucker (KKT) 最適性條件的性質、解釋與價值;各種提出的約束資格之間的相互關係;以及拉格朗日對偶性和鞍點最適性條件
- 演算法及其收斂,介紹解決無約束和有約束非線性規劃問題的演算法
第三版的重要特點包括:
- 新主題,如第二內點法、非凸優化、不可微優化等
- 每章的更新討論和新應用
- 詳細的數值示例和圖形說明
- 對建模和制定非線性程序的基本涵蓋
- 簡單的數值問題
- 進階的理論練習
本書是專業人士的堅實參考資料,也是運籌學、管理科學、工業工程、應用數學及處理分析優化技術的工程學科學生的有用教材。邏輯性和自成體系的格式獨特地涵蓋了非線性規劃技術,提供了豐富的信息和大量有價值的示例與插圖,展示了非線性問題的最新進展。
**目錄**
第1章 介紹
1.1 問題陳述與基本定義
1.2 示範例子
1.3 模型建構指導
練習
註解與參考文獻
第1部分 凸分析
第2章 凸集合
2.1 凸包
2.2 集合的閉包與內部
2.3 威爾斯特拉斯定理
2.4 集合的分離與支持
2.5 凸錐與極性
2.6 多面體集合、極點與極方向
2.7 線性規劃與單純形法
練習
註解與參考文獻
第3章 凸函數與一般化
3.1 定義與基本性質
3.2 凸函數的次梯度
3.3 可微凸函數
3.4 凸函數的最小值與最大值
3.5 凸函數的一般化
練習
註解與參考文獻
第2部分 最適性條件與對偶性
第4章 Fritz John 和 Karush-Kuhn-Tucker 最適性條件
4.1 無約束問題
4.2 具有不等式約束的問題
4.3 具有不等式和等式約束的問題
4.4 有約束問題的二階必要與充分最適性條件
練習
註解與參考文獻
第5章 約束資格
5.1 切線錐
5.2 其他約束資格
5.3 具有不等式和等式約束的問題
練習
註解與參考文獻
第6章 拉格朗日對偶性與鞍點最適性條件
6.1 拉格朗日對偶問題
6.2 對偶性定理與鞍點最適性條件
6.3 對偶函數的性質
6.4 制定與解決對偶問題
6.5 獲得原始解
6.6 線性與二次規劃
練習
註解與參考文獻
第3部分 演算法及其收斂
第7章 演算法的概念
7.1 演算法與演算法映射
7.2 封閉映射與收斂
7.3 映射的組合
7.4 演算法之間的比較
練習
註解與參考文獻
第8章 無約束優化
8.1 不使用導數的線性搜索
8.2 使用導數的線性搜索
8.3 一些實用的線性搜索方法
8.4 線性搜索演算法映射的封閉性
8.5 不使用導數的多維搜索
8.6 使用導數的多維搜索
8.7 牛頓法的修改:Levenberg-Marquardt 和信賴區域方法
8.8 使用共軛方向的方法:準牛頓法和共軛梯度法
8.9 次梯度優化方法
練習
註解與參考文獻
第9章 處罰與障礙函數
9.1 處罰函數的概念
9.2 外部處罰函數方法
9.3 精確絕對值與增強拉格朗日處罰方法
9.4 障礙函數方法
9.5 基於障礙函數的線性規劃的多項式時間內點演算法
練習
註解與參考文獻
第10章 可行方向的方法
10.1 Zoutendijk 方法
10.2 Zoutendijk 方法的收斂分析
10.3 逐步線性規劃方法
10.4 逐步二次規劃或投影拉格朗日方法
10.5 Rosen 的梯度投影法
10.6 Wolfe 的簡化梯度法與廣義簡化梯度法
10.7 Zangwill 的凸-單純形法
10.8 簡化梯度法的有效一階與二階變體
練習
註解與參考文獻
第11章 線性互補問題,二次、可分離、分數與幾何規劃
11.1 線性互補問題
11.2 凸與非凸二次規劃:全局優化方法
11.3 可分離規劃
11.4 線性分數規劃
11.5 幾何規劃
練習
註解與參考文獻
附錄 A 數學回顧
附錄 B 凸性、最適性條件與對偶性的摘要
參考文獻