Convex Optimization (Hardcover)
暫譯: 凸優化 (精裝版)

Stephen Boyd, Lieven Vandenberghe

買這商品的人也買了...

相關主題

商品描述

 

<內容簡介>

 

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

>Gives comprehensive details on how to recognize convex optimization problems in a wide variety of settings
>Provides a broad range of practical algorithms for solving real problems
>Contains hundreds of worked examples and homework exercises

<章節目錄>

 

Preface
1. Introduction
Part I. Theory:
2. Convex sets
3. Convex functions
4. Convex optimization problems
5. Duality
Part II. Applications:
6. Approximation and fitting
7. Statistical estimation
8. Geometrical problems
Part III. Algorithms:
9. Unconstrained minimization
10. Equality constrained minimization
11. Interior-point methods
Appendices

 

商品描述(中文翻譯)

內容簡介

凸優化問題在許多不同領域中經常出現。本書提供了該主題的全面介紹,並詳細說明如何以高效的方式數值解決這些問題。本書從凸集合和函數的基本元素開始,然後描述各類凸優化問題。接著涵蓋對偶性和近似技術,以及統計估計技術。然後介紹各種幾何問題,並詳細討論無約束和有約束的最小化問題,以及內點法。本書的重點在於識別凸優化問題,然後找到最合適的解決技術。書中包含許多實例和作業練習,將吸引工程、計算機科學、數學、統計、金融和經濟等領域的學生、研究人員和從業者。

- 提供了如何在各種情境中識別凸優化問題的全面細節
- 提供了一系列實用算法以解決實際問題
- 包含數百個實例和作業練習

章節目錄

前言
1. 介紹
第一部分 理論:
2. 凸集合
3. 凸函數
4. 凸優化問題
5. 對偶性
第二部分 應用:
6. 近似和擬合
7. 統計估計
8. 幾何問題
第三部分 算法:
9. 無約束最小化
10. 等式約束最小化
11. 內點法
附錄