Nonlinear Optimization (Hardcover)
暫譯: 非線性優化 (精裝版)

Andrzej Ruszczynski

  • 出版商: Princeton University
  • 出版日期: 2006-01-22
  • 售價: $1,350
  • 貴賓價: 9.8$1,323
  • 語言: 英文
  • 頁數: 464
  • 裝訂: Hardcover
  • ISBN: 0691119155
  • ISBN-13: 9780691119151
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

Description

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures.

The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems.

Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.

Table of Contents

Preface xi

Chapter 1. Introduction 1

PART 1. THEORY 15

Chapter 2. Elements of Convex Analysis 17
2.1 Convex Sets 17
2.2 Cones 25
2.3 Extreme Points 39
2.4 Convex Functions 44
2.5 Subdifferential Calculus 57
2.6 Conjugate Duality 75

Chapter 3. Optimality Conditions 88
3.1 Unconstrained Minima of Differentiable Functions 88
3.2 Unconstrained Minima of Convex Functions 92
3.3 Tangent Cones 98
3.4 Optimality Conditions for Smooth Problems 113
3.5 Optimality Conditions for Convex Problems 125
3.6 Optimality Conditions for Smooth-Convex Problems 133
3.7 Second Order Optimality Conditions 139
3.8 Sensitivity 150

Chapter 4. Lagrangian Duality 160
4.1 The Dual Problem 160
4.2 Duality Relations 166
4.3 Conic Programming 175
4.4 Decomposition 180
4.5 Convex Relaxation of Nonconvex Problems 186
4.6 The Optimal Value Function 191
4.7 The Augmented Lagrangian 196

PART 2. METHODS 209

Chapter 5. Unconstrained Optimization of Differentiable Functions 211
5.1 Introduction to Iterative Algorithms 211
5.2 Line Search 213
5.3 The Method of Steepest Descent 218
5.4 Newton's Method 233
5.5 The Conjugate Gradient Method 240
5.6 Quasi-Newton Methods 257
5.7 Trust Region Methods 266
5.8 Nongradient Methods 275

Chapter 6. Constrained Optimization of Differentiable Functions 286
6.1 Feasible Point Methods 286
6.2 Penalty Methods 297
6.3 The Basic Dual Method 308
6.4 The Augmented Lagrangian Method 311
6.5 Newton's Method 324
6.6 Barrier Methods 331

Chapter 7. Nondifferentiable Optimization 343
7.1 The Subgradient Method 343
7.2 The Cutting Plane Method 357
7.3 The Proximal Point Method 366
7.4 The Bundle Method 372
7.5 The Trust Region Method 384
7.6 Constrained Problems 389
7.7 Composite Optimization 397
7.8 Nonconvex Constraints 406

Appendix A. Stability of Set-Constrained Systems 411
A.1 Linear-Conic Systems 411
A.2 Set-Constrained Linear Systems 415
A.3 Set-Constrained Nonlinear Systems 418
Further Reading 427

Bibliography 431
Index 445

商品描述(中文翻譯)

**描述**

優化是現代應用數學中最重要的領域之一,應用範圍涵蓋工程學、經濟學、金融、統計學、管理科學和醫學等領域。雖然許多書籍已經探討了其各個方面,但《非線性優化》是第一本全面的著作,能夠讓研究生和研究人員在合理的時間內理解其現代思想、原則和方法,而不犧牲數學的精確性。Andrzej Ruszczynski,非線性隨機系統優化的領先專家,以統一、清晰且數學上嚴謹的方式整合了非線性優化的理論和方法,並通過眾多示例和圖形提供詳細且易於理解的證明。

本書涵蓋了凸分析、最優條件理論、對偶理論以及解決無約束和有約束優化問題的數值方法。它不僅涉及經典材料,還探討了現代主題,如最優條件和針對非可微函數問題的數值方法、半正定規劃、集合約束系統的度量正則性和穩定性理論,以及優化問題的靈敏度分析。

基於作者在成功教授該主題時編寫的十年筆記,本書將幫助讀者理解現代非線性優化理論和方法的數學基礎,分析新問題,為其發展最優理論,並選擇或構建數值解法。對於任何對優化有認真興趣的人來說,這本書都是必備之作。

**目錄**

前言 xi

第一章 引言 1

第一部分 理論 15

第二章 凸分析的元素 17
2.1 凸集合 17
2.2 錐 25
2.3 極點 39
2.4 凸函數 44
2.5 次微分計算 57
2.6 共軛對偶性 75

第三章 最優條件 88
3.1 可微函數的無約束最小值 88
3.2 凸函數的無約束最小值 92
3.3 切錐 98
3.4 平滑問題的最優條件 113
3.5 凸問題的最優條件 125
3.6 平滑-凸問題的最優條件 133
3.7 二階最優條件 139
3.8 靈敏度 150

第四章 拉格朗日對偶性 160
4.1 對偶問題 160
4.2 對偶性關係 166
4.3 錐規劃 175
4.4 分解 180
4.5 非凸問題的凸放鬆 186
4.6 最優值函數 191
4.7 增強拉格朗日法 196

第二部分 方法 209

第五章 可微函數的無約束優化 211
5.1 迭代算法介紹 211
5.2 線性搜索 213
5.3 最速下降法 218
5.4 牛頓法 233
5.5 共軛梯度法 240
5.6 擬牛頓法 257
5.7 信賴區域法 266
5.8 非梯度法 275

第六章 可微函數的有約束優化 286
6.1 可行點方法 286
6.2 處罰方法 297
6.3 基本對偶法 308
6.4 增強拉格朗日法 311
6.5 牛頓法 324
6.6 障礙法 331

第七章 非可微優化 343
7.1 次梯度法 343
7.2 切平面法 357
7.3 近端點法 366
7.4 捆綁法 372
7.5 信賴區域法 384
7.6 有約束問題 389
7.7 複合優化 397
7.8 非凸約束 406

附錄A 集合約束系統的穩定性 411
A.1 線性-錐系統 411
A.2 集合約束線性系統 415
A.3 集合約束非線性系統 418
進一步閱讀 427

參考文獻 431
索引 445