Non-Convex Multi-Objective Optimization (Springer Optimization and Its Applications)
暫譯: 非凸多目標優化(Springer優化及其應用)

Panos M. Pardalos, Antanas Žilinskas, Julius Žilinskas

  • 出版商: Springer
  • 出版日期: 2017-08-09
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 192
  • 裝訂: Hardcover
  • ISBN: 3319610058
  • ISBN-13: 9783319610054
  • 海外代購書籍(需單獨結帳)

商品描述

Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.  

商品描述(中文翻譯)

本書介紹了有關非凸多目標優化問題及其方法的最新研究成果,特別關注於昂貴的黑箱目標函數。多目標優化方法幫助設計師、工程師和研究人員在各種相互衝突的目標之間做出適當的權衡決策。本書開發了多種確定性和隨機的多目標優化方法。從基本概念和非凸單目標優化問題的回顧開始,本書接著涵蓋了多目標分支界限算法、最壞情況最優算法(針對Lipschitz函數和雙目標問題)、基於統計模型的算法以及概率分支界限方法。詳細描述了非凸多目標優化的新算法、其理論依據,以及在製造工程中的單元形成問題、化學工程中的過程設計和業務流程管理的實際應用示例,以幫助數學、計算機科學、工程、經濟學和商業管理的研究人員和研究生。