Introduction to Machine Learning with R: Rigorous Mathematical Analysis (Paperback)
Scott V. Burger
- 出版商: O'Reilly
- 出版日期: 2018-05-01
- 定價: $1,900
- 售價: 9.5 折 $1,805
- 貴賓價: 9.0 折 $1,710
- 語言: 英文
- 頁數: 226
- 裝訂: Paperback
- ISBN: 1491976446
- ISBN-13: 9781491976449
-
相關分類:
R 語言、Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$680$537 -
$680$537 -
$1,560$1,482 -
$580$458 -
$580$458 -
$749Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (Paperback)
-
$918Machine Learning with TensorFlow
-
$480$379 -
$780$616 -
$780$616 -
$2,205TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
-
$720$569 -
$352WCF 編程權威指南
-
$210$200 -
$1,500$1,425 -
$880$695 -
$860$817 -
$600$468 -
$550$429 -
$980$774 -
$880$695
相關主題
商品描述
Machine learning can be a difficult subject if you’re not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You’ll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret.
By developing a familiarity with topics like understanding the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning.
- Understand the major parts of machine learning algorithms
- Recognize how machine learning can be used to solve a problem in a simple manner
- Figure out when to use certain machine learning algorithms versus others
- Learn how to operationalize algorithms with cutting edge packages
商品描述(中文翻譯)
機器學習是一個相對困難的主題,如果你對基礎不熟悉的話。這本書將以統計程式語言R作為工具,為你打下機器學習的基礎。你將從回歸等基礎知識開始,進一步學習神經網絡等高級主題,最後深入探討R世界中的機器學習前沿,如Caret等套件。
通過瞭解回歸和分類模型之間的差異等主題,你將能夠解決各種機器學習問題。知道何時使用特定模型或不使用可以使你的模型高度準確,而不是完全無用。本書提供了大量的例子,以建立對機器學習的實際知識。
本書的重點包括:
- 理解機器學習算法的主要部分
- 認識如何以簡單的方式使用機器學習解決問題
- 理解何時使用特定的機器學習算法
- 學習如何使用尖端套件來操作算法