Scikit-Learn Cookbook
暫譯: Scikit-Learn 食譜

Trent Hauck

買這商品的人也買了...

商品描述

Over 50 recipes to incorporate scikit-learn into every step of the data science pipeline, from feature extraction to model building and model evaluation

About This Book

  • Learn how to handle a variety of tasks with Scikit-Learn with interesting recipes that show you how the library really works
  • Use Scikit-Learn to simplify the programming side data so you can focus on thinking
  • Discover how to apply algorithms in a variety of situations

Who This Book Is For

If you're a data scientist already familiar with Python but not Scikit-Learn, or are familiar with other programming languages like R and want to take the plunge with the gold standard of Python machine learning libraries, then this is the book for you.

What You Will Learn

  • Address algorithms of various levels of complexity and learn how to analyze data at the same time
  • Handle common data problems such as feature extraction and missing data
  • Understand how to evaluate your models against themselves and any other model
  • Discover just enough math needed to learn how to think about the connections between various algorithms
  • Customize the machine learning algorithm to fit your problem, and learn how to modify it when the situation calls for it
  • Incorporate other packages from the Python ecosystem to munge and visualize your dataset

In Detail

Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. Its consistent API and plethora of features help solve any machine learning problem it comes across.

The book starts by walking through different methods to prepare your data—be it a dataset with missing values or text columns that require the categories to be turned into indicator variables. After the data is ready, you'll learn different techniques aligned with different objectives—be it a dataset with known outcomes such as sales by state, or more complicated problems such as clustering similar customers. Finally, you'll learn how to polish your algorithm to ensure that it's both accurate and resilient to new datasets.

商品描述(中文翻譯)

**超過 50 種食譜,將 scikit-learn 融入數據科學流程的每個步驟,從特徵提取到模型建立和模型評估**

## 本書介紹

- 學習如何使用 Scikit-Learn 處理各種任務,透過有趣的食譜展示這個庫的實際運作方式
- 使用 Scikit-Learn 簡化編程方面的數據處理,讓你能專注於思考
- 探索如何在各種情況下應用算法

## 本書適合誰

如果你是一位已經熟悉 Python 的數據科學家,但對 Scikit-Learn 不太了解,或者你熟悉其他編程語言如 R,並想要嘗試 Python 機器學習庫的黃金標準,那麼這本書就是為你而寫的。

## 你將學到什麼

- 處理各種複雜程度的算法,同時學習如何分析數據
- 處理常見的數據問題,如特徵提取和缺失數據
- 理解如何評估你的模型與自身及其他模型的表現
- 探索學習所需的數學知識,以便思考各種算法之間的聯繫
- 自訂機器學習算法以適應你的問題,並學習在情況需要時如何修改它
- 整合 Python 生態系統中的其他套件來處理和可視化你的數據集

## 詳細內容

Python 正迅速成為分析師和數據科學家的首選語言,因為它的簡單性和靈活性,而在 Python 數據領域中,scikit-learn 是機器學習的無可爭議的選擇。它一致的 API 和豐富的功能幫助解決任何遇到的機器學習問題。

本書首先介紹不同的方法來準備你的數據——無論是包含缺失值的數據集,還是需要將類別轉換為指示變數的文本列。在數據準備好之後,你將學習與不同目標相對應的不同技術——無論是已知結果的數據集,如各州的銷售數據,還是更複雜的問題,如聚類相似的客戶。最後,你將學習如何優化你的算法,以確保其準確性和對新數據集的韌性。