Practical Data Analysis Cookbook
暫譯: 實用數據分析食譜
Tomasz Drabas
- 出版商: Packt Publishing
- 出版日期: 2016-04-29
- 售價: $2,200
- 貴賓價: 9.5 折 $2,090
- 語言: 英文
- 頁數: 384
- 裝訂: Paperback
- ISBN: 1783551666
- ISBN-13: 9781783551668
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Over 60 practical recipes on data exploration and analysis
About This Book
- Clean dirty data, extract accurate information, and explore the relationships between variables
- Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn
- Find and extract the most important features from your dataset using the most efficient Python libraries
Who This Book Is For
If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so.
What You Will Learn
- Read, clean, transform, and store your data usng Pandas and OpenRefine
- Understand your data and explore the relationships between variables using Pandas and D3.js
- Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels
- Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy
- Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn
- Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi
- Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK
- Study simulation techniques in an example of a gas station with agent-based modeling
In Detail
Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors.
This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more.
First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data―arguably the most time-consuming (and the most important) tasks for any data scientist.
In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models.
In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews.
By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer.
Style and approach
This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.
商品描述(中文翻譯)
超過 60 個實用的數據探索與分析食譜
本書介紹
- 清理髒數據,提取準確信息,探索變數之間的關係
- 使用 pandas、NumPy、Statsmodels 和 scikit-learn 預測電廠的輸出和美國河流的水流量
- 使用最有效的 Python 函式庫找到並提取數據集中最重要的特徵
本書適合誰閱讀
如果您是初學者或中級專業人士,並希望使用 Python 解決日常的分析問題,那麼這本書適合您。即使沒有先前的程式設計和數據分析經驗,您也能完成每個食譜並在過程中學習。
您將學到什麼
- 使用 Pandas 和 OpenRefine 讀取、清理、轉換和存儲數據
- 使用 Pandas 和 D3.js 理解數據並探索變數之間的關係
- 使用 Pandas、mlpy、NumPy 和 Statsmodels 探索各種技術來分類和聚類銀行的外部行銷活動通話數據
- 使用 pandas、NumPy 和 mlpy 降低數據集的維度並提取最重要的特徵
- 使用回歸模型預測電廠的輸出,並使用時間序列方法預測美國河流的水流量,工具包括 pandas、NumPy、Statsmodels 和 scikit-learn
- 使用 NetworkX 和 Gephi 探索社交互動並識別詐騙活動,應用圖論概念
- 使用 urlib 和 BeautifulSoup 擷取網頁,並了解自然語言處理技術以使用 NLTK 分類電影評分
- 在一個加油站的範例中研究基於代理的建模的模擬技術
詳細內容
數據分析是系統性地應用統計和邏輯技術來描述和說明、濃縮和回顧以及評估數據的過程。其重要性在信息和通信技術領域最為明顯。它幾乎是所有經濟部門的員工資產。
本書提供了一組豐富的獨立食譜,深入數據分析和建模的世界,使用各種方法、工具和算法。您將學習數據處理和建模的基本知識,並逐步提升技能,進入更高級的主題,如模擬、原始文本處理、社交互動分析等。
首先,您將學習一些易於遵循的實用技術,如何讀取、寫入、清理、重新格式化、探索和理解數據——這無疑是任何數據科學家最耗時(也是最重要)的任務。
在第二部分,不同的獨立食譜深入探討中級主題,如分類、聚類、預測等。在這些易於遵循的食譜的幫助下,您還將學習可以輕鬆擴展以解決其他現實問題的技術,例如構建推薦引擎或預測模型。
在第三部分,您將探索更高級的主題:從圖論領域到自然語言處理、離散選擇建模到模擬。您還將擴展識別詐騙來源的知識,利用圖形、擷取互聯網網站,並根據評價對電影進行分類。
到本書結束時,您將能夠有效地使用 Python 環境所提供的各種工具。
風格與方法
這本實用的食譜指南分為三個部分,針對數據分析師/科學家在日常工作中面臨的現實數據建模問題進行探討和解決。每個獨立的食譜都以易於遵循的逐步方式編寫。