Machine Learning Projects for .NET Developers
暫譯: .NET 開發者的機器學習專案

Mathias Brandewinder

商品描述

Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context.

In a series of fascinating projects, you’ll learn how to:

  • Build an optical character recognition (OCR) system from scratch
  • Code a spam filter that learns by example
  • Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language)
  • Transform your data into informative features, and use them to make accurate predictions
  • Find patterns in data when you don’t know what you’re looking for
  • Predict numerical values using regression models
  • Implement an intelligent game that learns how to play from experience

Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.

What you’ll learn

  • Learn vocabulary and landscape of machine learning
  • Recognize patterns in problems and how to solve them
  • Learn simple prediction algorithms and how to apply them
  • Develop, diagnose and tune your models
  • Write elegant, efficient and bug-free functional code with F#

Who this book is for

Machine Learning Projects for .NET Developers is for intermediate to advanced .NET developers who are comfortable with C#. No prior experience of machine learning techniques is required. If you’re new to F#, you’ll find everything you need to get started. If you’re already familiar with F#, you’ll find a wealth of new techniques here to interest and inspire you.

While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches and how they can be used in actual code. If you enjoy hacking code and data, this book is for you.

Table of Contents

Chapter 1: 256 Shades of Gray: Building A Program to Automatically Recognize Images of Numbers

Chapter 2: Spam or Ham? Detecting Spam in Text Using Bayes' Theorem

Chapter 3: The Joy of Type Providers: Finding and Preparing Data, From Anywhere

Chapter 4: Of Bikes and Men: Fitting a Regression Model to Data with Gradient Descent

Chapter 5: You Are Not An Unique Snowflake: Detecting Patterns with Clustering and Principle Component Analysis

Chapter 6: Trees and Forests: Making Predictions from Incomplete Data

Chapter 7: A Strange Game: Learning From Experience with Reinforcement Learning

Chapter 8: Digits, Revisited: Optimizing and Scaling Your Algorithm Code

Chapter 9: Conclusion

商品描述(中文翻譯)

《.NET 開發者的機器學習專案》展示了如何構建更智能的 .NET 應用程式,這些應用程式能夠從數據中學習,使用簡單的算法和技術,這些技術可以應用於各種現實世界的問題。您將在熟悉的 Visual Studio 環境中編寫每個專案,而機器學習邏輯則使用 F#,這是一種非常適合於 .NET 機器學習應用的語言。如果您是 F# 的新手,本書將提供您所需的一切以開始學習。如果您已經熟悉 F#,這是您在一個令人興奮的新環境中實踐該語言的機會。

在一系列引人入勝的專案中,您將學習如何:

- 從零開始構建光學字符識別 (OCR) 系統
- 編寫一個通過範例學習的垃圾郵件過濾器
- 使用 F# 的強大類型提供者與外部資源(在這種情況下,來自 R 語言的數據分析工具)進行接口
- 將數據轉換為有用的特徵,並利用這些特徵進行準確的預測
- 在不知道要尋找什麼的情況下,從數據中尋找模式
- 使用回歸模型預測數值
- 實現一個智能遊戲,從經驗中學習如何玩

在這個過程中,您將學習可以應用於各種現實世界背景和行業的基本概念,從廣告到金融、醫療和科學研究。雖然某些機器學習算法使用相當高級的數學,但本書專注於簡單但有效的方法。如果您喜歡編寫代碼和處理數據,本書適合您。

您將學習的內容:

- 學習機器學習的詞彙和概念
- 辨識問題中的模式及其解決方法
- 學習簡單的預測算法及其應用
- 開發、診斷和調整您的模型
- 使用 F# 編寫優雅、高效且無錯誤的函數式代碼

本書的對象:

《.NET 開發者的機器學習專案》適合中級到高級的 .NET 開發者,這些開發者對 C# 感到舒適。無需具備機器學習技術的先前經驗。如果您是 F# 的新手,您將找到開始所需的一切。如果您已經熟悉 F#,您將在這裡發現大量新技術,讓您感興趣並受到啟發。

雖然某些機器學習算法使用相當高級的數學,但本書專注於簡單但有效的方法以及如何在實際代碼中使用它們。如果您喜歡編寫代碼和處理數據,本書適合您。

目錄:

第 1 章:《256 種灰色的陰影》:構建一個自動識別數字圖像的程式
第 2 章:《垃圾郵件還是正常郵件?》使用貝葉斯定理檢測文本中的垃圾郵件
第 3 章:《類型提供者的樂趣》:從任何地方尋找和準備數據
第 4 章:《自行車與人》:使用梯度下降法擬合回歸模型
第 5 章:《你不是獨一無二的雪花》:使用聚類和主成分分析檢測模式
第 6 章:《樹與森林》:從不完整數據中進行預測
第 7 章:《奇怪的遊戲》:通過強化學習從經驗中學習
第 8 章:《數字,重訪》:優化和擴展您的算法代碼
第 9 章:結論