Mastering .NET Machine Learning
暫譯: 精通 .NET 機器學習
Jamie Dixon
- 出版商: Packt Publishing
- 出版日期: 2016-03-29
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 358
- 裝訂: Paperback
- ISBN: 1785888404
- ISBN-13: 9781785888403
-
相關分類:
.NET、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$250$225 -
$2,120$2,014 -
$520$364 -
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback)
-
$450$351 -
$1,620$1,539 -
$2,010$1,910 -
$1,590$1,511 -
$403系統分析與設計:敏捷迭代方法(原書第6版)
-
$3,370$3,202 -
$958深度學習
-
$650$507 -
$454JSON 實戰
-
$320$272 -
$284大數據技術
-
$398$299 -
$460$391 -
$420$332 -
$599$473 -
$800$680 -
$400$316 -
$780$616 -
$2,185Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)
-
$720$562 -
$880$695
相關主題
商品描述
About This Book
- Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0
- Set up your business application to start using machine learning techniques
- Familiarize the user with some of the more common .NET libraries for machine learning
- Implement several common machine learning techniques
- Evaluate, optimize and adjust machine learning models
Who This Book Is For
This book is targeted at .NET developers who want to build complex machine learning systems. Some basic understanding of data science is required.
What You Will Learn
- Write your own machine learning applications and experiments using the latest .NET Framework, including .NET Core 1.0
- Set up your business application to start using machine learning
- Accurately predict the future of your data using simple, multiple, and logistic regressions
- Discover hidden patterns using decision trees
- Acquire, prepare, and combine datasets to drive insights
- Optimize business throughput using Bayes Classifier
- Discover (more) hidden patterns using k-NN and Naive Bayes
- Discover (even more) hidden patterns using k-means and PCA
- Use Neural Networks to improve business decision making while using the latest ASP.NET technologies
In Detail
.NET is one of the widely used platforms for developing applications. With the meteoric rise of machine learning, developers are now keen on finding out how to make their .NET applications smarter using machine learning.
Mastering .NET Machine Learning is packed with real-world examples to explain how to easily use machine learning techniques in your business applications. You will begin with an introduction to F# and prepare yourselves for machine learning using the .NET Framework. You will then learn how to write a simple linear regression model and, forming a base with the regression model, you will start using machine learning libraries available in .NET Framework such as Math.NET, numl, and Accord.NET with examples. Next, you are going to take a deep dive into obtaining, cleaning, and organizing your data. You will learn the implementation of k-means and PCA using Accord.NET and numl libraries. You will be using Neural Networks, AzureML, and Accord.NET to transform your application into a hybrid scientific application. You will also see how to deal with very large datasets using MBrace and deploy machine learning models to IoT devices so that the machine can learn and adapt on the fly.
商品描述(中文翻譯)
關於本書
- 基於 .NET Framework 4.6.1,包含 ASP.NET Core 1.0 的範例
- 設置您的商業應用程式以開始使用機器學習技術
- 讓使用者熟悉一些常見的 .NET 機器學習庫
- 實現幾種常見的機器學習技術
- 評估、優化和調整機器學習模型
本書適合對象
本書針對希望構建複雜機器學習系統的 .NET 開發人員。需要對數據科學有一些基本的理解。
您將學到什麼
- 使用最新的 .NET Framework(包括 .NET Core 1.0)編寫自己的機器學習應用程式和實驗
- 設置您的商業應用程式以開始使用機器學習
- 使用簡單的、多元的和邏輯回歸準確預測您的數據未來
- 使用決策樹發現隱藏的模式
- 獲取、準備和結合數據集以推動洞察
- 使用貝葉斯分類器優化商業吞吐量
- 使用 k-NN 和 Naive Bayes 發現(更多)隱藏的模式
- 使用 k-means 和 PCA 發現(甚至更多)隱藏的模式
- 使用神經網絡改善商業決策,同時使用最新的 ASP.NET 技術
詳細內容
.NET 是一個廣泛使用的應用程式開發平台。隨著機器學習的迅速崛起,開發人員現在熱衷於了解如何利用機器學習使他們的 .NET 應用程式更智能。
《掌握 .NET 機器學習》充滿了現實世界的範例,解釋如何輕鬆地在您的商業應用程式中使用機器學習技術。您將從 F# 的介紹開始,為使用 .NET Framework 進行機器學習做好準備。接著,您將學習如何編寫一個簡單的線性回歸模型,並以回歸模型為基礎,開始使用 .NET Framework 中可用的機器學習庫,如 Math.NET、numl 和 Accord.NET,並附上範例。接下來,您將深入了解如何獲取、清理和組織您的數據。您將學習使用 Accord.NET 和 numl 庫實現 k-means 和 PCA。您將使用神經網絡、AzureML 和 Accord.NET 將您的應用程式轉變為混合科學應用程式。您還將看到如何使用 MBrace 處理非常大的數據集,並將機器學習模型部署到 IoT 設備上,以便機器能夠即時學習和適應。