C# Machine Learning Projects: Nine real-world projects to build robust and high-performing machine learning models with C#
暫譯: C# 機器學習專案:九個實際專案以建立穩健且高效能的機器學習模型

Yoon Hyup Hwang

  • 出版商: Packt Publishing
  • 出版日期: 2018-06-14
  • 售價: $1,520
  • 貴賓價: 9.5$1,444
  • 語言: 英文
  • 頁數: 350
  • 裝訂: Paperback
  • ISBN: 1788996402
  • ISBN-13: 9781788996402
  • 相關分類: C#Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Power your C# and .NET applications with exciting machine learning models and modular projects

Key Features

  • Produce classification, regression, association, and clustering models
  • Expand your understanding of machine learning and C#
  • Get to grips with C# packages such as Accord.net, LiveCharts, and Deedle

Book Description

Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for your future projects.

You will get an overview of the machine learning systems and how you, as a C# and .NET developer, can apply your existing knowledge to the wide gamut of intelligent applications, all through a project-based approach. You will start by setting up your C# environment for machine learning with the required packages, Accord.NET, LiveCharts, and Deedle. We will then take you right from building classifcation models for spam email fltering and applying NLP techniques to Twitter sentiment analysis, to time-series and regression analysis for forecasting foreign exchange rates and house prices, as well as drawing insights on customer segments in e-commerce. You will then build a recommendation model for music genre recommendation and an image recognition model for handwritten digits. Lastly, you will learn how to detect anomalies in network and credit card transaction data for cyber attack and credit card fraud detections.

By the end of this book, you will be putting your skills in practice and implementing your machine learning knowledge in real projects.

What you will learn

  • Set up the C# environment for machine learning with required packages
  • Build classification models for spam email filtering
  • Get to grips with feature engineering using NLP techniques for Twitter sentiment analysis
  • Forecast foreign exchange rates using continuous and time-series data
  • Make a recommendation model for music genre recommendation
  • Familiarize yourself with munging image data and Neural Network models for handwritten-digit recognition
  • Use Principal Component Analysis (PCA) for cyber attack detection
  • One-Class Support Vector Machine for credit card fraud detection

Who This Book Is For

If you're a C# or .NET developer with good knowledge of C#, then this book is perfect for you to get Machine Learning into your projects and make smarter applications.

Table of Contents

  1. Basics of machine learning modeling
  2. Spam email filtering
  3. Twitter sentiment analysis
  4. Foreign exchange rate forecast
  5. Fair value of house/property
  6. Customer segmentation
  7. Music genre recommendation
  8. Handwritten digit recognition
  9. Cyber attack detection
  10. Credit card fraud detection
  11. What is next?

商品描述(中文翻譯)

**用令人興奮的機器學習模型和模組化專案為您的 C# 和 .NET 應用程式提供動力**

#### 主要特點
- 產生分類、回歸、關聯和聚類模型
- 擴展您對機器學習和 C# 的理解
- 熟悉 C# 套件,如 Accord.net、LiveCharts 和 Deedle

#### 書籍描述
機器學習應用於幾乎所有類型的現實世界環境和行業,從醫療到廣告;從金融到科學研究。本書將幫助您學習如何為您的問題選擇模型,如何評估模型的性能,以及如何使用 C# 為您的未來專案構建機器學習模型。

您將獲得機器學習系統的概述,以及作為 C# 和 .NET 開發者,您如何將現有知識應用於各種智能應用,這一切都通過基於專案的方法進行。您將首先設置 C# 環境以進行機器學習,並安裝所需的套件,包括 Accord.NET、LiveCharts 和 Deedle。接著,我們將帶您從構建垃圾郵件過濾的分類模型和應用 NLP 技術進行 Twitter 情感分析,到使用時間序列和回歸分析預測外匯匯率和房價,以及在電子商務中對客戶細分進行洞察。然後,您將構建一個音樂類型推薦的推薦模型和一個手寫數字識別的圖像識別模型。最後,您將學習如何檢測網絡和信用卡交易數據中的異常,以進行網絡攻擊和信用卡詐騙檢測。

在本書結束時,您將能夠將您的技能付諸實踐,並在實際專案中應用您的機器學習知識。

#### 您將學到的內容
- 設置 C# 環境以進行機器學習並安裝所需的套件
- 構建垃圾郵件過濾的分類模型
- 使用 NLP 技術進行 Twitter 情感分析的特徵工程
- 使用連續和時間序列數據預測外匯匯率
- 構建音樂類型推薦的推薦模型
- 熟悉圖像數據的處理和用於手寫數字識別的神經網絡模型
- 使用主成分分析 (PCA) 進行網絡攻擊檢測
- 使用一類支持向量機進行信用卡詐騙檢測

#### 本書適合誰
如果您是一位對 C# 有良好知識的 C# 或 .NET 開發者,那麼本書非常適合您將機器學習引入您的專案,並製作更智能的應用程式。

#### 目錄
1. 機器學習建模基礎
2. 垃圾郵件過濾
3. Twitter 情感分析
4. 外匯匯率預測
5. 房屋/財產的公允價值
6. 客戶細分
7. 音樂類型推薦
8. 手寫數字識別
9. 網絡攻擊檢測
10. 信用卡詐騙檢測
11. 接下來是什麼?