Phishing and Countermeasures: Understanding the Increasing Problem of Electronic Identity Theft (Hardcover)
暫譯: 網路釣魚與對策:理解日益嚴重的電子身份盜竊問題 (精裝版)

Markus Jakobsson, Steven Myers

  • 出版商: Wiley
  • 出版日期: 2006-11-01
  • 定價: $3,600
  • 售價: 8.5$3,060
  • 語言: 英文
  • 頁數: 736
  • 裝訂: Hardcover
  • ISBN: 0471782459
  • ISBN-13: 9780471782452
  • 相關分類: 行銷/網路行銷 Marketing資訊安全
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

Description

Phishing and Counter-Measures discusses how and why phishing is a threat, and presents effective countermeasures. Showing you how phishing attacks have been mounting over the years, how to detect and prevent current as well as future attacks, this text focuses on corporations who supply the resources used by attackers. The authors subsequently deliberate on what action the government can take to respond to this situation and compare adequate versus inadequate countermeasures.
 
 
Table of Contents
1. Introduction to Phishing.

1.1 What is Phishing?

1.2 A Brief History of Phishing.

1.3 The Costs to Society of Phishing.

1.4 A Typical Phishing Attack.

1.4.1 Phishing Example: America’s Credit Unions.

1.4.2 Phishing Example: PayPal.

1.4.3 Making The Lure Convincing.

1.4.4 Setting The Hook.

1.4.5 Making The Hook Convincing.

1.4.6 The Catch.

1.4.7 Take Down and Related Technologies.

1.5 Evolution of Phishing.

1.6 Case Study: Phishing on Froogle.

1.7 Protecting Users from Phishing.

References.

2. Phishing Attacks: Information Flow and Chokepoints.

2.1 Types of Phishing Attacks.

2.1.1 Deceptive Phishing.

2.1.2 Malware-Based Phishing.

2.1.3 DNS-Based Phishing(“Pharming”).

2.1.4 Content-Injection Phishing.

2.1.5 Man-in-the-Middle Phishing.

2.1.6 Search Engine Phishing.

2.2 Technology, Chokepoints and Countermeasures.

2.2.1 Step 0: Preventing a Phishing Attack Before it Begins.

2.2.2 Step 1: Preventing Delivery of Phishing Payload.

2.2.3 Step 2: Preventing or Disrupting a User Action.

2.2.4 Steps 2 and 4: Prevent Navigation and Data Compromise.

2.2.5 Step 3: Preventing Transmission of the Prompt.

2.2.6 Step 4: Preventing Transmission of Confidential Information.

2.2.7 Steps 4 and 6: Preventing Data Entry and Rendering it Useless.

2.2.8 Step 5: Tracing Transmission of Compromised Credentials.

2.2.9 Step 6: Interfering with the Use of Compromised Information.

2.2.10 Step 7: Interfering with the Financial Benefit.

References.

3. Spoofing and Countermeasures.

3.1 E-Mail Spoofing.

3.1.1 Filtering.

3.1.2 Whitelisting and Greylisting.

3.1.3 Anti-spam Proposals.

3.1.4 User education.

3.2 IP Spoofing.

3.2.1 IP Traceback.

3.2.2 IP Spoofing Prevention.

3.2.3 Intra-domain Spoofing.

3.3 Homograph attacks using Unicode.

3.3.1 Homograph Attacks.

3.3.2 Similar Unicode String Generation.

3.3.3 Methodology of Homograph Attack Detection.

3.4 Simulated Browser Attack.

3.4.1 Using the Illusion.

3.4.2 Web Spoofing.

3.4.3 SSL and Webspoofing.

3.4.4 Ensnaring the User.

3.4.5 SpoofGuard vs. the Simulated Browser Attack.

3.5 Case Study: Warning the User About Active Web Spoofing.

References.

4. Pharming and Client Side Attacks.

4.1 Malware.

4.1.1 Viruses and Worms.

4.1.2 Spyware.

4.1.3 Adware.

4.1.4 Browser Hijackers.

4.1.5 Keyloggers.

4.1.6 Trojan Horses.

4.1.7 Rootkits.

4.1.8 Session Hijackers.

4.2 Malware Defense Strategies.

4.2.1 Defense Against Worms and Viruses .

4.2.2 Defense Against Spyware and Keyloggers.

4.2.3 Defending Against Rootkits.

4.3 Pharming.

4.3.1 Overview of DNS.

4.3.2 Role of DNS in Pharming.

4.3.3 Defending Against Pharming.

4.4 Case Study: Pharming with Appliances.

4.4.1 A different phishing strategy.

4.4.2 The spoof: a home pharming appliance.

4.4.3 Sustainability of distribution in the online marketplace.

4.4.4 Countermeasures.

4.5 Case Study: Race-Pharming.

4.5.1 Technical Description.

4.5.2 Detection and Counter-Measures.

4.5.3 Contrast with DNS Pharming.

References.

5. Status Quo Security Tools.

5.1 An overview of Anti-Spam Techniques.

5.2 Public Key Cryptography and its Infrastructure.

5.2.1 Public key Encryption.

5.2.2 Digital Signatures.

5.2.3 Certificates & Certificate Authorities.

5.2.4 Certificates.

5.3 SSL Without a PKI.

5.3.1 Modes Of Authentication.

5.3.2 The Handshaking Protocol.

5.3.3 SSL in the Browser.

5.4 Honeypots.

5.4.1 Technical Details.

5.4.2 Honeypots and the Security Process.

5.4.3 Email honeypots.

5.4.4 Phishing tools and tactics.

References.

6. Adding Context to Phishing Attacks: Spear Phishing.

6.1 Overview of Context Aware Phishing.

6.2 Modeling Phishing Attacks.

6.2.1 Stages of Context Aware Attacks.

6.2.2 Identity Linking.

6.2.3 Analysing the General Case.

6.2.4 Analysis of One Example Attack.

6.2.5 Defenses Against our Example Attacks.

6.3 Case Study: Automated Trawling for Public Private Data.

6.3.1 Mother’s Maiden Name: Plan of Attack.

6.3.2 Availability of Vital Information.

6.3.3 Heuristics for MMN Discovery.

6.3.4 Experimental Design.

6.3.5 Assessing the Damage.

6.3.6 Time and Space Heustics.

6.3.7 MMN Compromise in Suffixed Children.

6.3.8 Other Ways to Derive Mother’s Maiden Names.

6.4 Case Study: Using Your Social Network Against You.

6.4.1 Motivations of a social phishing attack experiment.

6.4.2 Design considerations.

6.4.3 Data mining.

6.4.4 Performing the attack.

6.4.5 Results.

6.4.6 Reactions expressed in experiment blog.

6.5 Case Study: Browser Recon Attacks.

6.5.1 Who Cares Where I’ve Been?

6.5.2 Mining Your History.

6.5.3 CSS To Mine History.

6.5.4 Bookmarks.

6.5.5 Various Uses For Browser-Recon.

6.5.6 Protecting Against Browser Recon Attacks.

6.6 Case Study: Using the Autofill feature in Phishing.

6.7 Case Study: Acoustic Keyboard Emanations.

6.7.1 Previous Attacks of Acoustic Emanations.

6.7.2 Description of Attack.

6.7.3 Technical Details.

6.7.4 Experiments.

References.

7. Human-Centered Design Considerations.

7.1 Introduction: The Human Context of Phishing and Online Security.

7.1.1 Human Behavior.

7.1.2 Browser and Security Protocol Issues in the Human Context.

7.1.3 Overview of the HCI and Security Literature.

7.2 Understanding and Designing for Users.

7.2.1 Understanding Users and Security.

7.2.2 Designing Usable Secure Systems.

7.3 Mis-Education.

7.3.1 How Does Learning Occur?

7.3.2 The Lessons.

7.3.3 Learning to Be Phished.

7.3.4 Solution Framework.

References.

8. Passwords.

8.1 Traditional Passwords.

8.1.1 Cleartext Passwords.

8.1.2 Password recycling.

8.1.3 Hashed Passwords.

8.1.4 Brute force attacks.

8.1.5 Dictionary Attacks.

8.1.6 Time-Memory Tradeoffs.

8.1.7 Salted Passwords.

8.1.8 Eavesdropping.

8.1.9 One-time passwords.

8.1.10 Alternatives to passwords.

8.2 Case Study: Phishing in Germany.

8.2.1 Comparison of Procedures.

8.2.2 Recent Changes and New Challenges.

8.3 Security Questions as Password Reset Mechanisms.

8.3.1 Knowledge Based Authentication.

8.3.2 Security Properties of Life Questions.

8.3.3 Protocols Using Life Questions.

8.3.4 Example Systems.

8.4 One-Time Password Tokens.

8.4.1 OTPs as a phishing countermeasure.

8.4.2 Advanced concepts.

References.

9. Mutual Authentication and Trusted Pathways.

9.1 The Need for Reliable Mutual Authentication.

9.1.1 Distinctions Between The Physical and Virtual World.

9.1.2 The State of Current Mutual Authentication.

9.2 Password Authenticated Key Exchange.

9.2.1 A Comparison between PAKE and SSL.

9.2.2 An Example PAKE Protocol: SPEKE.

9.2.3 Other PAKE Protocols and Some Augmented Variations.

9.2.4 Doppelganger Attacks on PAKE.

9.3 Delayed Password Disclosure.

9.3.1 DPD Security Guarantees.

9.3.2 A DPD protocol.

9.4 Trusted Path: How To Find Trust in an Unscrupulous World.

9.4.1 Trust on the World Wide Web.

9.4.2 Trust Model: Extended Conventional Model.

9.4.3 Trust Model: Xenophobia.

9.4.4 Trust Model: Untrusted Local Computer.

9.4.5 Trust Model: Untrusted Recipient.

9.4.6 Usability Considerations.

9.5 Dynamic Security Skins.

9.5.1 Security Properties.

9.5.2 Why Phishing Works.

9.5.3 Dynamic Security Skins.

9.5.4 User Interaction.

9.5.5 Security Analysis.

9.6 Browser Enhancements for Preventing Phishing.

9.6.1 Goals for Anti-phishing Techniques.

9.6.2 Google Safe Browsing.

9.6.3 Phoolproof Phishing Prevention.

9.6.4 Final Design of the Two-factor Authentication System.

References.

10. Biometrics and Authentication.

10.1 Biometrics.

10.1.1 Fundamentals of Biometric Authentication.

10.1.2 Biometrics and Cryptography.

10.1.3 Biometrics and Phishing.

10.1.4 Phishing Biometric Characteristics.

10.2 Hardware Tokens for Authentication and Authorization.

10.3 Trusted computing platforms and secure Operating Systems.

10.3.1 Protecting Against Information Harvesting.

10.3.2 Protecting Against Information Snooping.

10.3.3 Protecting Against Redirection.

10.4 Secure Dongles and PDAs.

10.4.1 The Promise and Problems of PKI.

10.4.2 Smart Cards and USB Dongles to Mitigate Risk.

10.4.3 PorKI Design and Use.

10.4.4 PorKI Evaluation.

10.4.5 New Applications and Directions.

10.5 Cookies for Authentication.

10.5.1 Cache-Cookie Memory Management.

10.5.2 Cache-cookie memory.

10.5.3 C-memory.

10.5.4 TIF-based cache cookies.

10.5.5 Schemes for User Identification and Authentication.

10.5.6 Identifier trees.

10.5.7 Rolling-pseudonym scheme.

10.5.8 Denial-of-service attacks.

10.5.9 Secret cache cookies.

10.5.10 Audit Mechanisms.

10.5.11 Proprietary identifier-trees.

10.5.12 Implementation.

10.6 Lightweight Email Signatures.

10.6.1 Cryptographic and System Preliminaries.

10.6.2 Lightweight Email Signatures.

10.6.3 Technology Adoption.

10.6.4 Vulnerabilities.

10.6.5 Experimental Results.

References.

11. Making Takedown Difficult.

11.1 Detection and Takedown.

11.1.1 Avoiding Distributed Phishing Attacks - Overview.

11.1.2 Collection of candidate phishing emails.

11.1.3 Classification of phishing emails.

References.

12. Protecting Browser State.

12.1 Client-Side Protection of Browser State.

12.1.1 Same-Origin Principle.

12.1.2 Protecting Cache.

12.1.3 Protecting Visited Links.

12.2 Server-Side Protection of Browser State.

12.2.1 Goals.

12.2.2 A Server-side Solution.

12.2.3 Pseudonyms.

12.2.4 Translation Policies.

12.2.5 Special Cases.

12.2.6 Security Argument.

12.2.7 Implementation Details.

12.2.8 Pseudonyms and Translation.

12.2.9 General Considerations.

References.

13. Browser Toolbars.

13.1 Browser-Based Anti-Phishing Tools.

13.1.1 Information-Oriented Tools.

13.1.2 Database-Oriented Tools.

13.1.3 Domain-Oriented Tools.

13.2 Do Browser Toolbars Actually Prevent Phishing?

13.2.1 Study design.

13.2.2 Results and discussion.

References.

14. Social Networks.

14.1 The Role of Trust Online.

14.2 Existing Solutions for Securing Trust Online.

14.2.1 Reputation Systems and Social Networks.

14.2.2 Third Party Certifications.

14.2.3 First Party Assertions.

14.2.4 Existing Solutions for Securing Trust Online.

14.3 Case Study: “Net Trust”.

14.3.1 Identity.

14.3.2 The Buddy List.

14.3.3 The Security Policy.

14.3.4 The Rating System.

14.3.5 The Reputation System.

14.3.6 Privacy Considerations and Anonymity Models.

14.3.7 Usability Study Results.

14.4 The Risk of Social Networks.

References.

15. Microsoft’s Anti-Phishing Technologies and Tactics.

15.1 Cutting The Bait: SmartScreen Detection of Email Spam and Scams.

15.2 Cutting The Hook: Dynamic Protection Within the Web Browser.

15.3 Prescriptive Guidance and Education for Users.

15.4 Ongoing Collaboration, Education and Innovation.

References.

16. Using S/MIME.

16.1 Secure Electronic Mail: A Brief History.

16.1.1 The Key Certification Problem.

16.1.2 Sending Secure Email: Usability Concerns.

16.1.3 The Need to Redirect Focus.

16.2 Amazon.com’s Experience with S/MIME.

16.2.1 Survey methodology.

16.2.2 Awareness of cryptographic capabilities.

16.2.3 Segmenting the respondents.

16.2.4 Appropriate uses of signing and sealing.

16.3 Signatures Without Sealing.

16.3.1 Evaluating the usability impact of S/MIME-signed messages.

16.3.2 Problems from the field.

16.4 Conclusions and Recommendations.

16.4.1 Promote incremental deployment.

16.4.2 Extending security from the walled garden.

16.4.3 S/MIME for Webmail.

16.4.4 Improving the S/MIME client.

References.

17. Experimental evaluation of attacks and counter-measures.

17.1 Behavioral Studies.

17.1.1 Targets of Behavioral Studies.

17.1.2 Techniques of Behavioral Studies for Security.

17.1.3 Strategic and Tactical Studies.

17.2 Case Study: Attacking eBay Users with Queries.

17.2.1 User-to-User Phishing on eBay.

17.2.2 eBay Phishing Scenarios.

17.2.3 Experiment Design.

17.2.4 Methodology.

17.3 Case Study: Signed Applets.

17.3.1 Trusting Applets.

17.3.2 Exploiting Applets’ Abilities.

17.3.3 Understanding the Potential Impact.

17.4 Case Study: Ethically Studying Man in the Middle.

17.4.1 Man-in-the-Middle and Phishing.

17.4.2 Experiment: Design Goals and Theme.

17.4.3 Experiment: Man-in-the-middle technique implementation.

17.4.4 Experiment: Participant Preparation.

17.4.5 Experiment: Phishing Delivery Method.

17.4.6 Experiment: Debriefing.

17.4.7 Preliminary Findings.

17.5 Legal Considerations in Phishing Research.

17.5.1 Specific Federal and State Laws.

17.5.2 Contract Law - Business Terms of Use.

17.5.3 Potential Tort Liability.

17.5.4 The Scope of Risk.

17.6 Case Study: Designing and Conducting Phishing Experiments.

17.6.1 Ethics and Regulation.

17.6.2 Phishing experiments - three case studies.

17.6.3 Making it Look Like Phishing.

17.6.4 Subject Reactions.

17.6.5 The Issue of Timeliness.

References.

18. Liability for Phishing.

18.1 Impersonation.

18.1.1 Anti-SPAM.

18.1.2 Trademark.

18.1.3 Copyright.

18.2 Obtaining Personal Information.

18.2.1 Fraudulent Access.

18.2.2 Identity Theft.

18.2.3 Wire Fraud.

18.2.4 Pretexting.

18.2.5 Unfair Trade Practice.

18.2.6 Phishing-Specific Legislation.

18.2.7 Theft.

18.3 Exploiting Personal Information.

18.3.1 Fraud.

18.3.2 Identity Theft.

18.3.3 Illegal Computer Access.

18.3.4 Trespass to Chattels.

References.

19. The Future.

商品描述(中文翻譯)

**描述**

《網路釣魚與對策》討論了網路釣魚為何構成威脅及其原因,並提出有效的對策。這本書展示了網路釣魚攻擊如何在多年中不斷增加,如何檢測和防止當前及未來的攻擊,重點關注提供攻擊者所需資源的企業。作者隨後討論了政府可以採取的應對措施,並比較了充分與不足的對策。

**目錄**

1. 網路釣魚簡介
1.1 什麼是網路釣魚?
1.2 網路釣魚的簡史。
1.3 網路釣魚對社會的成本。
1.4 一個典型的網路釣魚攻擊。
1.4.1 網路釣魚範例:美國的信用合作社。
1.4.2 網路釣魚範例:PayPal。
1.4.3 使誘餌更具說服力。
1.4.4 設置陷阱。
1.4.5 使陷阱更具說服力。
1.4.6 捕獲。
1.4.7 拆除和相關技術。
1.5 網路釣魚的演變。
1.6 案例研究:Froogle上的網路釣魚。
1.7 保護用戶免受網路釣魚。
參考文獻。

2. 網路釣魚攻擊:信息流與瓶頸。
2.1 網路釣魚攻擊的類型。
2.1.1 欺騙性網路釣魚。
2.1.2 基於惡意軟體的網路釣魚。
2.1.3 基於DNS的網路釣魚(“Pharming”)。
2.1.4 內容注入網路釣魚。
2.1.5 中間人網路釣魚。
2.1.6 搜索引擎網路釣魚。
2.2 技術、瓶頸與對策。
2.2.1 步驟0:在網路釣魚攻擊開始之前進行預防。
2.2.2 步驟1:防止網路釣魚有效載荷的傳遞。
2.2.3 步驟2:防止或干擾用戶行為。
2.2.4 步驟2和4:防止導航和數據洩露。
2.2.5 步驟3:防止提示的傳輸。
2.2.6 步驟4:防止機密信息的傳輸。
2.2.7 步驟4和6:防止數據輸入並使其無效。
2.2.8 步驟5:追蹤被洩露憑證的傳輸。
2.2.9 步驟6:干擾被洩露信息的使用。
2.2.10 步驟7:干擾財務利益。
參考文獻。

3. 偽造與對策。
3.1 電子郵件偽造。
3.1.1 過濾。
3.1.2 白名單和灰名單。
3.1.3 反垃圾郵件提案。
3.1.4 用戶教育。
3.2 IP偽造。
3.2.1 IP追蹤。
3.2.2 IP偽造預防。
3.2.3 內部域偽造。
3.3 使用Unicode的同形攻擊。
3.3.1 同形攻擊。
3.3.2 相似Unicode字符串生成。
3.3.3 同形攻擊檢測的方法論。
3.4 模擬瀏覽器攻擊。
3.4.1 使用幻覺。
3.4.2 網頁偽造。
3.4.3 SSL與網頁偽造。
3.4.4 捕獲用戶。
3.4.5 SpoofGuard與模擬瀏覽器攻擊。
3.5 案例研究:警告用戶有關主動網頁偽造。
參考文獻。

4. Pharming與客戶端攻擊。
4.1 惡意軟體。
4.1.1 病毒和蠕蟲。
4.1.2 間諜軟體。
4.1.3 廣告軟體。
4.1.4 瀏覽器劫持者。
4.1.5 鍵盤記錄器。
4.1.6 特洛伊木馬。
4.1.7 Rootkit。
4.1.8 會話劫持者。
4.2 惡意軟體防禦策略。
4.2.1 防禦蠕蟲和病毒。
4.2.2 防禦間諜軟體和鍵盤記錄器。
4.2.3 防禦Rootkit。
4.3 Pharming。
4.3.1 DNS概述。
4.3.2 DNS在Pharming中的角色。
4.3.3 防禦Pharming。
4.4 案例研究:使用設備的Pharming。
4.4.1 一種不同的網路釣魚策略。
4.4.2 偽造:家庭Pharming設備。
4.4.3 在線市場的分發可持續性。
4.4.4 對策。
4.5 案例研究:Race-Pharming。
4.5.1 技術描述。
4.5.2 檢測與對策。
4.5.3 與DNS Pharming的對比。
參考文獻。

5. 現狀安全工具。
5.1 反垃圾郵件技術概述。
5.2 公開金鑰加密及其基礎設施。
5.2.1 公開金鑰加密。