R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5
暫譯: R 機器學習專案:使用 R 3.5 實作監督式、非監督式及強化學習技術

Dr. Sunil Kumar Chinnamgari

買這商品的人也買了...

商品描述

Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more

Key Features

  • Master machine learning, deep learning, and predictive modeling concepts in R 3.5
  • Build intelligent end-to-end projects for finance, retail, social media, and a variety of domains
  • Implement smart cognitive models with helpful tips and best practices

Book Description

R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization.

This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you'll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You'll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine.

By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations.

What you will learn

  • Explore deep neural networks and various frameworks that can be used in R
  • Develop a joke recommendation engine to recommend jokes that match users' tastes
  • Create powerful ML models with ensembles to predict employee attrition
  • Build autoencoders for credit card fraud detection
  • Work with image recognition and convolutional neural networks
  • Make predictions for casino slot machine using reinforcement learning
  • Implement NLP techniques for sentiment analysis and customer segmentation

Who this book is for

If you're a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.

Table of Contents

  1. Exploring the Machine Learning Landscape
  2. Predicting Employees Attrition using Ensemble models
  3. Implementing a Jokes Recommendation Engine
  4. Sentiment Analysis of Amazon Reviews with NLP
  5. Customer Segmentation Using Wholesale Data
  6. Image Recognition using Deep Neural Network
  7. Credit Card Fraud Detection Using Autoencoders
  8. Automatic Prose Generation with Recurrent Neural Networks
  9. Winning the Casino Slot Machine with Reinforcement Learning
  10. Appendix

商品描述(中文翻譯)

**掌握多個機器學習領域,透過實際專案使用 TensorFlow for R、H2O、MXNet 等工具**

#### 主要特點
- 精通 R 3.5 中的機器學習、深度學習和預測建模概念
- 為金融、零售、社交媒體及多個領域構建智能端到端專案
- 實施智能認知模型,並提供有用的提示和最佳實踐

#### 書籍描述
R 是執行計算統計(統計計算)和探索機器學習數學方面最受歡迎的語言之一。透過本書,您將利用 R 生態系統構建高效的機器學習應用程式,執行組織內的智能任務。

本書將幫助您測試自己的知識和技能,指導您如何從簡單到複雜地構建機器學習專案。您將首先學習如何使用集成方法構建強大的機器學習模型,以預測員工流失。接下來,您將實施一個笑話推薦引擎,並學習如何對亞馬遜評論進行情感分析。您還將探索不同的聚類技術,以使用批發數據對客戶進行細分。此外,本書將讓您熟悉使用自編碼器進行信用卡詐騙檢測,以及使用強化學習進行預測並在賭場老虎機上獲勝。

在本書結束時,您將具備自信地執行複雜任務的能力,以構建自動化操作的研究和商業專案。

#### 您將學到的內容
- 探索深度神經網絡及可在 R 中使用的各種框架
- 開發一個笑話推薦引擎,推薦符合用戶口味的笑話
- 使用集成方法創建強大的機器學習模型以預測員工流失
- 構建自編碼器以進行信用卡詐騙檢測
- 使用圖像識別和卷積神經網絡進行工作
- 使用強化學習對賭場老虎機進行預測
- 實施自然語言處理技術進行情感分析和客戶細分

#### 本書適合誰
如果您是數據分析師、數據科學家或機器學習開發人員,想要通過構建實際專案來精通使用 R 的機器學習概念,那麼這本書就是為您而寫。每個專案將幫助您測試實施機器學習算法和技術的技能。對機器學習有基本了解並具備 R 程式設計的工作知識是充分利用本書的必要條件。

#### 目錄
1. 探索機器學習的全景
2. 使用集成模型預測員工流失
3. 實施笑話推薦引擎
4. 使用自然語言處理進行亞馬遜評論的情感分析
5. 使用批發數據進行客戶細分
6. 使用深度神經網絡進行圖像識別
7. 使用自編碼器進行信用卡詐騙檢測
8. 使用遞歸神經網絡自動生成散文
9. 使用強化學習贏得賭場老虎機
10. 附錄