Introduction to Machine Learning with R: Rigorous Mathematical Analysis (Paperback)
暫譯: 使用 R 的機器學習入門:嚴謹的數學分析 (平裝本)
Scott V. Burger
- 出版商: O'Reilly
- 出版日期: 2018-05-01
- 定價: $1,900
- 售價: 8.8 折 $1,672
- 語言: 英文
- 頁數: 226
- 裝訂: Paperback
- ISBN: 1491976446
- ISBN-13: 9781491976449
-
相關分類:
R 語言、Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$680$537 -
$680$537 -
$1,590$1,511 -
$580$458 -
$580$458 -
$749Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (Paperback)
-
$918Machine Learning with TensorFlow
-
$480$379 -
$780$616 -
$780$616 -
$2,156TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
-
$720$568 -
$352WCF 編程權威指南
-
$210$200 -
$1,500$1,425 -
$880$695 -
$860$817 -
$600$468 -
$550$429 -
$980$774 -
$880$695
商品描述
Machine learning can be a difficult subject if you’re not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You’ll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret.
By developing a familiarity with topics like understanding the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning.
- Understand the major parts of machine learning algorithms
- Recognize how machine learning can be used to solve a problem in a simple manner
- Figure out when to use certain machine learning algorithms versus others
- Learn how to operationalize algorithms with cutting edge packages
商品描述(中文翻譯)
機器學習如果你不熟悉基本概念,可能會是一個困難的主題。這本書將為你提供使用統計程式語言 R 的機器學習入門原則的堅實基礎。你將從回歸等基本概念開始,然後進入更高級的主題,如神經網絡,最後深入 R 環境中的機器學習前沿,使用像 Caret 這樣的套件。
通過熟悉理解回歸模型和分類模型之間的區別等主題,你將能夠解決各種機器學習問題。知道何時使用特定模型與否,可能意味著一個高度準確的模型和一個完全無用的模型之間的差異。這本書提供了大量的範例,以建立對機器學習的實用知識。
- 理解機器學習算法的主要部分
- 認識機器學習如何以簡單的方式解決問題
- 確定何時使用某些機器學習算法而非其他算法
- 學習如何使用尖端套件將算法實作化