Advanced Signal Processing: A Concise Guide
Najmi, Amir-Homayoon, Moon, Todd
- 出版商: McGraw-Hill Education
- 出版日期: 2020-09-03
- 定價: $2,600
- 售價: 9.0 折 $2,340
- 語言: 英文
- 頁數: 352
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1260458938
- ISBN-13: 9781260458930
立即出貨
買這商品的人也買了...
-
$3,660$3,477 -
$1,870$1,777 -
$780$741 -
$1,550Optimal Control, 3/e (Hardcover)
-
$2,860$2,717 -
$301ModelSim 電子系統分析及模擬(第2版)
-
$229精通 LabVIEW 信號處理
-
$3,100$2,945 -
$1,176Analog Circuit Design: Discrete & Integrated (IE-Paperback)
-
$1,280$1,216 -
$3,465$3,292 -
$2,520Practical Time Series Analysis: Prediction with Statistics and Machine Learning (Paperback)
-
$1,320$1,294 -
$286Vivado 從此開始 (進階篇)
-
$2,450$2,328 -
$3,500$3,325 -
$2,310$2,195 -
$534$507 -
$594$564 -
$912圖神經網絡:基礎、前沿與應用
-
$534$507
相關主題
商品描述
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
A comprehensive introduction to the mathematical principles and algorithms in statistical signal processing and modern neural networks.
This text is an expanded version of a graduate course on advanced signal processing at the Johns Hopkins University Whiting school program for professionals with students from electrical engineering, physics, computer and data science, and mathematics backgrounds. It covers the theory underlying applications in statistical signal processing including spectral estimation, linear prediction, adaptive filters, and optimal processing of uniform spatial arrays. Unique among books on the subject, it also includes a comprehensive introduction to modern neural networks with examples in time series and image classification.
Coverage includes:
- Mathematical structures of signal spaces and matrix factorizations
- linear time-invariant systems and transforms
- Least squares filters
- Random variables, estimation theory, and random processes
- Spectral estimation and autoregressive signal models
- linear prediction and adaptive filters
- Optimal processing of linear arrays
- Neural networks
商品描述(中文翻譯)
出版商註解:從第三方賣家購買的產品,出版商不保證其品質、真實性或包含的任何在線權益的使用。
這本書是對統計信號處理和現代神經網絡中的數學原理和算法的全面介紹。
本文是約翰霍普金斯大學威廉學院專業人士的高級信號處理研究生課程的擴展版本,學生來自電氣工程、物理學、計算機和數據科學以及數學背景。它涵蓋了統計信號處理應用的理論,包括頻譜估計、線性預測、自適應濾波和均勻空間陣列的最優處理。與其他相關書籍不同的是,它還包括了對現代神經網絡的全面介紹,並提供了時間序列和圖像分類的示例。
內容包括:
- 信號空間和矩陣分解的數學結構
- 線性時不變系統和變換
- 最小二乘濾波器
- 隨機變量、估計理論和隨機過程
- 頻譜估計和自回歸信號模型
- 線性預測和自適應濾波器
- 線性陣列的最優處理
- 神經網絡
作者簡介
Amir-Homayoon Najmi, Ph.D., was a Fulbright scholar at the Relativity Centre, University of Texas. He has published research in wide areas including quantum field theory in cosmological space-times, seismic inverse scattering, adaptive signal processing applied to electromagnetic waves and biosurveillance.
Todd Moon, Ph.D., is head of the Electrical and Computer Engineering Department at Utah State University. He has been published extensively on digital communications theory and signal processing.
作者簡介(中文翻譯)
Amir-Homayoon Najmi, Ph.D.,是德州大學相對論中心的富布萊特學者。他在多個領域發表了研究成果,包括宇宙學空間中的量子場論、地震反演散射、適應性信號處理應用於電磁波和生物監測。
Todd Moon, Ph.D.,是猶他州立大學電機與電腦工程系的系主任。他在數位通訊理論和信號處理方面有豐富的發表。