Sparse Modeling: Theory, Algorithms, and Applications (Hardcover)
暫譯: 稀疏建模:理論、演算法與應用(精裝版)

Irina Rish, Genady Grabarnik

  • 出版商: CRC
  • 出版日期: 2014-12-04
  • 售價: $3,100
  • 貴賓價: 9.5$2,945
  • 語言: 英文
  • 頁數: 253
  • 裝訂: Hardcover
  • ISBN: 1439828695
  • ISBN-13: 9781439828694
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.

Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field.

 

The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions.

 

The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.

商品描述(中文翻譯)

稀疏模型在科學應用中尤其有用,例如在基因或神經影像數據中的生物標記發現,其中預測模型的可解釋性至關重要。稀疏性還可以顯著提高信號處理的成本效率。

《稀疏建模:理論、算法與應用》提供了對不斷增長的稀疏建模領域的介紹,包括應用範例、產生稀疏解的問題公式、尋找此類解的算法,以及有關稀疏恢復的最新理論結果。本書讓您了解最新的稀疏性相關發展,並激勵您繼續學習該領域的知識。

作者首先呈現了激勵性的範例和對稀疏建模中關鍵近期發展的高層次調查。接著,本書描述了涉及常用稀疏強制工具的優化問題,提出了基本的理論結果,並討論了幾種最先進的尋找稀疏解的算法。

作者接著處理各種稀疏恢復問題,將基本公式擴展到更複雜的結構稀疏形式和不同的損失函數。他們還檢視了一類特定的稀疏圖形模型,並涵蓋字典學習和稀疏矩陣分解。