Computer Age Statistical Inference : Algorithms, Evidence, and Data Science (Student Edition)(Paperback)
- 出版商: Cambridge
- 出版日期: 2021-06-17
- 售價: $1,680
- 貴賓價: 9.5 折 $1,596
- 語言: 英文
- 頁數: 510
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1108823416
- ISBN-13: 9781108823418
-
相關分類:
Algorithms-data-structures、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$3,490$3,316 -
$780$741 -
$4,490$4,266 -
$360$281 -
$1,980$1,940 -
$2,980$2,831 -
$650$507 -
$1,529Introduction to the Theory of Computation, 3/e (Hardcover)
-
$650$553 -
$7,190$6,831 -
$450$351 -
$560$420 -
$500$375 -
$2,600$2,548 -
$2,850$2,708 -
$680$537 -
$1,200$948 -
$680$537 -
$1,910$1,815 -
$458PyTorch 深度學習簡明實戰
-
$912圖神經網絡:基礎、前沿與應用
-
$780$608 -
$534$507 -
$600$468
相關主題
商品描述
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
商品描述(中文翻譯)
21世紀以來,統計方法學的範圍和影響力都有了驚人的擴展。"數據科學"和"機器學習"已成為新聞中常見的詞彙,因為統計方法被應用於現代科學和商業中的大型數據集。我們是如何到達這裡的?我們將會走向何方?這一切如何相互關聯?這本書以平裝本的形式出版,並配有練習題,提供了一門集中的現代統計思維課程。從古典推論理論(貝葉斯、頻率論、費雪)開始,各個章節涵蓋了一系列有影響力的主題:生存分析、邏輯回歸、經驗貝葉斯、劍橋樣本和自助法、隨機森林、神經網絡、馬爾可夫鏈蒙特卡羅、模型選擇後的推論等等。這種独特的現代方法將方法論和算法與統計推論相結合。每章結束時都有經過班級測試的練習題,書的結尾則對統計和數據科學的未來方向進行了推測。