Bayes Rules!: An Introduction to Applied Bayesian Modeling
暫譯: 貝葉斯法則!:應用貝葉斯建模入門
Johnson, Alicia A., Ott, Miles Q., Dogucu, Mine
- 出版商: CRC
- 出版日期: 2022-03-04
- 售價: $3,090
- 貴賓價: 9.5 折 $2,936
- 語言: 英文
- 頁數: 521
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367255391
- ISBN-13: 9780367255398
-
相關分類:
機率統計學 Probability-and-statistics
-
其他版本:
Bayes Rules!: An Introduction to Applied Bayesian Modeling
海外代購書籍(需單獨結帳)
商品描述
Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling
"A thoughtful and entertaining book, and a great way to get started with Bayesian analysis."
Andrew Gelman, Columbia University
"The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent."
Amy Herring, Duke University
"I sincerely believe that a generation of students will cite this book as inspiration for their use of - and love for - Bayesian statistics. The narrative holds the reader's attention and flows naturally - almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics.
Yue Jiang, Duke University
"This is by far the best book I've seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast - from basic building blocks to hierarchical modeling, but the authors' thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows."
Paul Roback, St. Olaf College
"The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging."
Nicholas Horton, Amherst College
An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum.
Features
- Utilizes data-driven examples and exercises.
- Emphasizes the iterative model building and evaluation process.
- Surveys an interconnected range of multivariable regression and classification models.
- Presents fundamental Markov chain Monte Carlo simulation.
- Integrates R code, including RStan modeling tools and the bayesrules package.
- Encourages readers to tap into their intuition and learn by doing.
- Provides a friendly and inclusive introduction to technical Bayesian concepts.
- Supports Bayesian applications with foundational Bayesian theory.
商品描述(中文翻譯)
對於貝葉斯法則!:應用貝葉斯建模入門的讚譽
「一本深思熟慮且引人入勝的書籍,是開始進行貝葉斯分析的絕佳方式。」
安德魯·吉爾曼,哥倫比亞大學
「這些範例是現代的,甚至許多頻率主義的入門書籍也忽略了重要主題(如重要的p值辯論),而這本書的作者則有針對性地討論了這些問題。專注於模擬以促進理解的方式非常出色。」
艾米·赫林,杜克大學
「我真心相信,將會有一代學生引用這本書作為他們使用和熱愛貝葉斯統計的靈感來源。這本書的敘述吸引讀者的注意,流暢自然,幾乎像對話一樣。簡而言之,這可能是我讀過的最引人入勝的入門統計學教材。[它] 是應用貝葉斯統計入門本科課程的自然選擇。」
岳江,杜克大學
「這是我見過的最好的書,教人如何(以及如何教學生)進行貝葉斯建模,並理解其背後的數學和計算。作者巧妙地建立直覺和支撐概念,使用有趣的實際案例研究、深刻的圖形和清晰的解釋。這本書的範圍廣泛——從基本構建塊到層級建模,但作者的周到組織使讀者能夠順利地導航這段旅程。令人印象深刻的是,在書的結尾,讀者能夠運行複雜的貝葉斯模型,並真正理解其原因、內容和方法。」
保羅·羅巴克,聖奧拉夫學院
「作者提供了一個引人注目、整合性強、易於理解且非宗教性的統計建模入門,採用貝葉斯方法。他們概述了一種原則性的方法,特別強調計算實現和模型評估,並在整個過程中交織著倫理意涵。學生和教師會發現這些概念和計算練習新穎且引人入勝。」
尼古拉斯·霍頓,阿默斯特學院
《貝葉斯法則!:應用貝葉斯建模入門》是對貝葉斯統計領域的一個引人入勝、精緻且有趣的介紹,將現代貝葉斯思維、建模和計算的力量帶給廣泛的讀者。特別是,這本書是高級本科統計學生和具有相當經驗的從業者的理想資源。《貝葉斯法則!》使讀者能夠將貝葉斯方法融入日常實踐中。討論和應用以數據為驅動。從基本到多變量、層級模型的自然進展強調了一個實用且可普遍應用的模型構建過程。對這些貝葉斯模型的評估反映了數據分析並非在真空中進行的事實。
特色
- 利用數據驅動的範例和練習。
- 強調迭代的模型構建和評估過程。
- 概述了一系列相互關聯的多變量回歸和分類模型。
- 介紹基本的馬可夫鏈蒙特卡羅模擬。
- 整合R代碼,包括RStan建模工具和bayesrules套件。
- 鼓勵讀者發揮直覺,通過實踐學習。
- 提供友好且包容的技術性貝葉斯概念入門。
- 以基礎的貝葉斯理論支持貝葉斯應用。
作者簡介
Alicia Johnson is an Associate Professor of Statistics at Macalester College in Saint Paul, Minnesota. She enjoys exploring and connecting students to Bayesian analysis, computational statistics, and the power of data in contributing to this shared world of ours.
Miles Ott is a Senior Data Scientist at The Janssen Pharmaceutical Companies of Johnson & Johnson. Prior to his current position, he taught at Carleton College, Augsburg University, and Smith College. He is interested in biostatistics, LGBTQ+ health research, analysis of social network data, and statistics/data science education. He blogs at milesott.com and tweets about statistics, gardening, and his dogs on Twitter.
Mine Dogucu is an Assistant Professor of Teaching in the Department of Statistics at University of California Irvine. She spends majority of her time thinking about what to teach, how to teach it, and what tools to use while teaching. She likes intersectional feminism, cats, and R Ladies. She tweets about statistics and data science education on Twitter.
作者簡介(中文翻譯)
是明尼蘇達州聖保羅的馬卡萊斯特學院(Macalester College)統計學副教授。她喜歡探索並將學生與貝葉斯分析(Bayesian analysis)、計算統計(computational statistics)以及數據在我們共同的世界中所能貢獻的力量聯繫起來。
是強生(Johnson & Johnson)旗下的詹森製藥公司(The Janssen Pharmaceutical Companies)的高級數據科學家。在目前的職位之前,他曾在卡爾頓學院(Carleton College)、奧格斯堡大學(Augsburg University)和史密斯學院(Smith College)任教。他對生物統計學(biostatistics)、LGBTQ+健康研究、社交網絡數據分析以及統計/數據科學教育感興趣。他在 milesott.com 上寫博客,並在 Twitter 上發表有關統計、園藝和他的狗的推文。
是加州大學爾灣分校(University of California Irvine)統計學系的教學助理教授。她大部分時間都在思考教什麼、如何教以及在教學時使用什麼工具。她喜歡交叉性女性主義(intersectional feminism)、貓和 R Ladies。她在 Twitter 上發表有關統計和數據科學教育的推文。