Bayesian Models: A Statistical Primer for Ecologists
暫譯: 貝葉斯模型:生態學家的統計入門

N. Thompson Hobbs, Mevin B. Hooten

買這商品的人也買了...

相關主題

商品描述

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods--in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.

Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.

This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.

  • Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians
  • Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more
  • Deemphasizes computer coding in favor of basic principles
  • Explains how to write out properly factored statistical expressions representing Bayesian models

商品描述(中文翻譯)

貝葉斯建模已成為生態研究中不可或缺的工具,因為它獨特地適合以統計上連貫的方式處理複雜性。本教科書提供了最新貝葉斯方法的全面且易於理解的介紹,使用生態學家能夠理解的語言。與其他相關書籍不同,本書強調計算背後的原則,使生態學家能夠全面理解如何實施這一強大的統計方法。

《貝葉斯模型》是非統計學家的必備入門書。它從概率的定義開始,逐步發展出一系列相互連結的概念,包括基本分佈理論、網絡圖、層級模型、馬可夫鏈蒙特卡羅(Markov chain Monte Carlo)以及單一和多重模型的推斷。本書獨特之處在於較少強調計算機編碼,而是偏向於簡明地呈現理解貝葉斯分析如何運作所需的數學統計知識。它還解釋了如何正確地寫出層級貝葉斯模型並在計算、研究論文和提案中使用它們。

這本入門書使生態學家能夠理解貝葉斯建模背後的統計原則,並將其應用於研究、教學、政策和管理。

- 以非統計學家能理解的語言呈現貝葉斯建模的數學和統計基礎
- 涵蓋基本分佈理論、網絡圖、層級模型、馬可夫鏈蒙特卡羅等內容
- 減少對計算機編碼的強調,側重於基本原則
- 解釋如何正確寫出表示貝葉斯模型的統計表達式