Probability and Computing: Randomized Algorithms and Probabilistic Analysis
暫譯: 機率與計算:隨機演算法與機率分析

Michael Mitzenmacher, Eli Upfal

  • 出版商: Cambridge
  • 出版日期: 2005-03-01
  • 售價: $1,176
  • 語言: 英文
  • 頁數: 370
  • 裝訂: Hardcover
  • ISBN: 0521835402
  • ISBN-13: 9780521835404
  • 相關分類: Algorithms-data-structures
  • 已過版

買這商品的人也買了...

商品描述

Description

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov’s inequality, Chevyshev’s inequality, Chernoff bounds, balls and bins models, the probabilistic method, and Markov chains. In the second half, the authors delve into more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods, coupling, martingales, and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.


• Contains needed background material to understand many subdisciplines of computer science
• Many examples and exercises
• Provides introduction to both core subject matter and advanced topics

 

Table of Contents

Preface; 1. Events and probability; 2. Discrete random variables and expectation; 3. Moments and deviations; 4. Chernoff bounds; 5. Balls, bins and random graphs; 6. The probabilistic method; 7. Markov chains and random walks; 8. Continuous distributions and the Poisson process; 9. Entropy, randomness, and information; 10. The Monte Carlo method; 11. Coupling of Markov chains; 12. Martingales; 13. Pairwise independence and universal hash functions; 14. Balanced allocations; References.

商品描述(中文翻譯)

**描述**

隨機化和概率技術在現代計算機科學中扮演著重要角色,應用範圍從組合優化和機器學習到通信網絡和安全協議。本教科書旨在配合一個或兩個學期的課程,適合高年級本科生或初級研究生學習計算機科學和應用數學。它對於開發概率算法和分析中使用的概率技術和範式提供了出色的介紹。書中僅假設讀者具備離散數學的基本背景,並以嚴謹而易於理解的方式處理材料,並提供了大量的例子和應用。書的前半部分涵蓋了核心材料,包括隨機抽樣、期望、馬爾可夫不等式、切比雪夫不等式、切爾諾夫界限、球與箱模型、概率方法和馬爾可夫鏈。在後半部分,作者深入探討更高級的主題,如連續概率、有限獨立性的應用、熵、馬爾可夫鏈蒙特卡羅方法、耦合、鞅和均衡分配。這本書涵蓋了全面的主題選擇,並提供了許多例子和練習,是一個不可或缺的教學工具。

- 包含理解計算機科學許多子學科所需的背景材料
- 許多例子和練習
- 提供核心主題和高級主題的介紹

**目錄**

前言;1. 事件與概率;2. 離散隨機變量與期望;3. 矩與偏差;4. 切爾諾夫界限;5. 球、箱與隨機圖;6. 概率方法;7. 馬爾可夫鏈與隨機遊走;8. 連續分佈與泊松過程;9. 熵、隨機性與信息;10. 蒙特卡羅方法;11. 馬爾可夫鏈的耦合;12. 鞅;13. 成對獨立性與通用哈希函數;14. 均衡分配;參考文獻。