Discrete Probability Models and Methods: Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding (Probability Theory and Stochastic Modelling)
暫譯: 離散機率模型與方法:圖形與樹上的機率、馬可夫鏈與隨機場、熵與編碼(機率論與隨機建模)

Pierre Brémaud

  • 出版商: Springer
  • 出版日期: 2017-02-03
  • 售價: $4,500
  • 貴賓價: 9.5$4,275
  • 語言: 英文
  • 頁數: 559
  • 裝訂: Hardcover
  • ISBN: 3319434756
  • ISBN-13: 9783319434759
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory.

The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.


商品描述(中文翻譯)

本書的重點放在一般模型(馬可夫鏈、隨機場、隨機圖)、通用方法(機率方法、耦合方法、Stein-Chen 方法、鞅方法、類型方法)以及多功能工具(Chernoff 界限、Hoeffding 不等式、Holley 不等式),這些工具的應用範圍遠超過本書的內容。雖然書中所處理的例子與通信與計算科學、運籌學及物理學的可能應用有關,但本書首先關注的是理論。

本書的水平相當於初級研究生課程。內容自成體系,前提知識僅包括基本微積分(級數)和基本線性代數(矩陣)。讀者不需要具備機率論的訓練,因為前幾章詳細介紹了理解本書其餘部分所需的背景知識。