Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Use Cases
暫譯: 應用圖形數據科學:圖算法與平台、知識圖譜、神經網絡及應用案例
Raj, Pethuru, Dutta, Pushan Kumar, Chong, Peter Han Joo
- 出版商: Morgan Kaufmann
- 出版日期: 2025-02-01
- 售價: $6,440
- 貴賓價: 9.5 折 $6,118
- 語言: 英文
- 頁數: 314
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443296545
- ISBN-13: 9780443296543
-
相關分類:
Algorithms-data-structures、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Use Cases delineates how graph data science significantly empowers the application of data science. The book discusses the emerging paradigm of graph data science in detail along with its practical research and real-world applications. Readers will be enriched with the knowledge of graph data science, graph analytics, algorithms, databases, platforms, and use cases across a variety of research and topics and applications. This book also presents how graphs are used as a programming language, especially demonstrating how Sleptsov Net Computing can contribute as an entirely graphical concurrent processing language for supercomputers. Graph data science is emerging as an expressive and illustrative data structure for optimally representing a variety of data types and their insightful relationships. These data structures include graph query languages, databases, algorithms, and platforms. From here, powerful analytics methods and machine learning/deep learning (ML/DL) algorithms are quickly evolving to analyze and make sense out of graph data. As a result, ground-breaking use cases across scientific research topics and industry verticals are being developed using graph data representation and manipulation. A wide range of complex business and scientific research requirements are efficiently represented and solved through graph data analysis, and Applied Graph Data Science: Graph Algorithms and Platforms, Knowledge Graphs, Neural Networks, and Applied Graph Data Science gives readers both the conceptual foundations and technical methods for applying these powerful techniques.
商品描述(中文翻譯)
《應用圖形數據科學:圖形算法與平台、知識圖譜、神經網絡及應用案例》詳細闡述了圖形數據科學如何顯著增強數據科學的應用。本書深入探討了圖形數據科學的新興範式,以及其實際研究和現實世界的應用。讀者將獲得有關圖形數據科學、圖形分析、算法、數據庫、平台和各種研究主題及應用案例的知識。本書還展示了圖形如何作為一種編程語言使用,特別是演示了 Sleptsov Net Computing 如何作為一種完全圖形化的並行處理語言,為超級計算機提供貢獻。圖形數據科學正逐漸成為一種表達性和示意性的數據結構,能夠最佳地表示各種數據類型及其深刻的關係。這些數據結構包括圖形查詢語言、數據庫、算法和平台。在此基礎上,強大的分析方法和機器學習/深度學習(ML/DL)算法正在迅速發展,以分析和理解圖形數據。因此,基於圖形數據表示和操作的突破性應用案例正在科學研究主題和行業垂直領域中開發。各種複雜的商業和科學研究需求通過圖形數據分析得以高效表示和解決,《應用圖形數據科學:圖形算法與平台、知識圖譜、神經網絡及應用圖形數據科學》為讀者提供了應用這些強大技術的概念基礎和技術方法。