Deep Learning By Example
暫譯: 透過範例學習深度學習

Ahmed Menshawy

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Get your first experience with deep learning with this easy-to-follow guide
  • Implement neural networks with the easiest, developer-friendly tools and techniques in the market.

Book Description

Deep Learning has made some huge and significant contributions and it's one of the mostly adopted techniques in order to drive insights from your data nowadays. Google developed one of the most used libraries (aka. TensorFlow) to use in order to build fast, robust against an error-prone and scale deep learning algorithms that can run on both CPU and GPU.

This book is a starting point for those who are keen on knowing about deep learning and implementing it, but do not have extensive background in machine learning. We will start with introducing you with Data science for performing data analysis, machine learning, and eventually deep learning. Then, you will explore algorithms and various techniques that lead into efficient data processing. You will learn to clean, mine, and analyze data. Once you are comfortable with some analysis, you will then move to creating machine learning models that will eventually lead you to neural networks. You will get familiar with basics of deep learning and explore various tools that enable deep learning in a powerful yet user friendly manner. While all of this is being taught, spread across the book, we will be using intuitive examples like Titanic survivor prediction, Housing price predictor, etc. teaching implementations of each of the concept. With a very low starting point, this book will enable a regular developer to get hands on experience with deep learning.

By the end of this book, you will learn all the essentials needed to explore and understand what is deep learning and will perform deep learning tasks first hand.

What you will learn

  • Learn about Data Science, its challenges and how to tackle them.
  • Learn the basics of Data Science and modern best practices with a Titanic Example.
  • Get familiarized with one of the most powerful platforms for Deep Learning(DL), TensorFlow 1.x.
  • Basic of Deep Learning and modern best practices with a digit classification problem of MNIST.
  • Dive into imaging problems by looking at early lung cancer detection and emotion recognition using CNN.
  • Apply deep learning to other domains like Language Modeling, ChatBots and Machine Translation using the one of the powerful architectures of DL, RNN.

商品描述(中文翻譯)

關鍵特點

- 透過這本易於遵循的指南,獲得您對深度學習的首次體驗
- 使用市場上最簡單、開發者友好的工具和技術來實現神經網絡

書籍描述

深度學習在當今數據分析中做出了巨大的貢獻,並且是驅動數據洞察的最常用技術之一。Google 開發了最常用的庫之一(即 TensorFlow),用於構建快速、穩健且能夠在 CPU 和 GPU 上運行的深度學習算法,這些算法對錯誤具有良好的容錯性。

這本書是對於那些渴望了解深度學習並實施它,但在機器學習方面沒有廣泛背景的人的起點。我們將從介紹數據科學開始,以進行數據分析、機器學習,最終進入深度學習。接著,您將探索導致高效數據處理的算法和各種技術。您將學習如何清理、挖掘和分析數據。一旦您對一些分析感到舒適,您將轉向創建機器學習模型,最終引導您進入神經網絡。您將熟悉深度學習的基本概念,並探索各種強大且用戶友好的深度學習工具。在整本書中,我們將使用直觀的例子,如泰坦尼克號生還者預測、房價預測等,來教學每個概念的實現。這本書以非常低的起點,使普通開發者能夠獲得深度學習的實踐經驗。

在本書結束時,您將學習到探索和理解深度學習所需的所有基本知識,並親自執行深度學習任務。

您將學到的內容

- 了解數據科學及其挑戰,以及如何應對這些挑戰。
- 了解數據科學的基本概念和現代最佳實踐,並以泰坦尼克號為例。
- 熟悉深度學習(DL)最強大的平台之一,TensorFlow 1.x。
- 深度學習的基本概念和現代最佳實踐,並以 MNIST 數字分類問題為例。
- 通過研究早期肺癌檢測和使用 CNN 的情感識別來深入了解影像問題。
- 將深度學習應用於其他領域,如語言建模、聊天機器人和機器翻譯,使用深度學習的一種強大架構 RNN。