Multi-Agent Machine Learning: A Reinforcement Approach
暫譯: 多代理機器學習:強化學習方法
H. M. Schwartz
- 出版商: Wiley
- 出版日期: 2014-08-11
- 定價: $3,600
- 售價: 9.5 折 $3,420
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover
- ISBN: 111836208X
- ISBN-13: 9781118362082
-
相關分類:
Machine Learning
-
相關翻譯:
多智能體機器學習 : 強化學習方法 (Multi-Agent Machine Learning : A Reinforcement Approach) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,430$1,359 -
$4,110$3,905 -
$1,000$900 -
$648$616 -
$1,600$1,520 -
$580$458 -
$352多智能體機器學習 : 強化學習方法 (Multi-Agent Machine Learning : A Reinforcement Approach)
-
$1,840$1,748 -
$1,900$1,805 -
$474$450 -
$403$379 -
$408強化學習精要:核心算法與 TensorFlow 實現
-
$1,188Deep Reinforcement Learning Hands-On
-
$580$493 -
$650$553 -
$300$255 -
$520$411 -
$301$283 -
$680$578 -
$880$695 -
$380$342 -
$580$458 -
$680$530 -
$690$538 -
$760$593
商品描述
Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics.
• Framework for understanding a variety of methods and approaches in multi-agent machine learning.
• Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning
• Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering
商品描述(中文翻譯)
多代理機器學習:強化學習方法是一個理解多代理機器學習中不同方法和途徑的框架。它還提供了對多代理微分遊戲最新進展的全面覆蓋,並展示了在博弈論和機器人技術中的應用。
• 理解多代理機器學習中各種方法和途徑的框架。
• 討論強化學習的方法,例如多代理 Q-learning 的多種形式。
• 適用於研究教授和研究電機與計算機工程、計算機科學以及機械與航空航天工程的研究生。