Python Deep Learning (Paperback)
暫譯: Python 深度學習 (平裝本)

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

  • Python Deep Learning (Paperback)-preview-1
  • Python Deep Learning (Paperback)-preview-2
  • Python Deep Learning (Paperback)-preview-3
  • Python Deep Learning (Paperback)-preview-4
  • Python Deep Learning (Paperback)-preview-5
  • Python Deep Learning (Paperback)-preview-6
  • Python Deep Learning (Paperback)-preview-7
  • Python Deep Learning (Paperback)-preview-8
  • Python Deep Learning (Paperback)-preview-9
  • Python Deep Learning (Paperback)-preview-10
  • Python Deep Learning (Paperback)-preview-11
  • Python Deep Learning (Paperback)-preview-12
  • Python Deep Learning (Paperback)-preview-13
  • Python Deep Learning (Paperback)-preview-14
  • Python Deep Learning (Paperback)-preview-15
  • Python Deep Learning (Paperback)-preview-16
  • Python Deep Learning (Paperback)-preview-17
  • Python Deep Learning (Paperback)-preview-18
  • Python Deep Learning (Paperback)-preview-19
  • Python Deep Learning (Paperback)-preview-20
  • Python Deep Learning (Paperback)-preview-21
  • Python Deep Learning (Paperback)-preview-22
  • Python Deep Learning (Paperback)-preview-23
  • Python Deep Learning (Paperback)-preview-24
  • Python Deep Learning (Paperback)-preview-25
  • Python Deep Learning (Paperback)-preview-26
  • Python Deep Learning (Paperback)-preview-27
  • Python Deep Learning (Paperback)-preview-28
  • Python Deep Learning (Paperback)-preview-29
  • Python Deep Learning (Paperback)-preview-30
  • Python Deep Learning (Paperback)-preview-31
  • Python Deep Learning (Paperback)-preview-32
  • Python Deep Learning (Paperback)-preview-33
  • Python Deep Learning (Paperback)-preview-34
  • Python Deep Learning (Paperback)-preview-35
  • Python Deep Learning (Paperback)-preview-36
  • Python Deep Learning (Paperback)-preview-37
  • Python Deep Learning (Paperback)-preview-38
  • Python Deep Learning (Paperback)-preview-39
  • Python Deep Learning (Paperback)-preview-40
Python Deep Learning (Paperback)-preview-1

買這商品的人也買了...

相關主題

商品描述

Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python.

About This Book

  • Explore and create intelligent systems using cutting-edge deep learning techniques
  • Implement deep learning algorithms and work with revolutionary libraries in Python
  • Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more

Who This Book Is For

This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired.

What You Will Learn

  • Get a practical deep dive into deep learning algorithms
  • Explore deep learning further with Theano, Caffe, Keras, and TensorFlow
  • Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines
  • Dive into Deep Belief Nets and Deep Neural Networks
  • Discover more deep learning algorithms with Dropout and Convolutional Neural Networks
  • Get to know device strategies so you can use deep learning algorithms and libraries in the real world

In Detail

With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries.

The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results.

Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques.

Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside.

Style and approach

Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.

商品描述(中文翻譯)

透過掌握深度學習的概念和演算法,將您的機器學習技能提升到一個新的層次,使用 Python。

本書介紹


  • 探索並創建使用尖端深度學習技術的智能系統

  • 實現深度學習演算法並使用 Python 中的革命性庫

  • 獲得真實世界的範例和易於跟隨的教程,涵蓋 Theano、TensorFlow、H2O 等

本書適合誰閱讀

本書適合數據科學從業者以及對機器學習概念有基本基礎理解並具備一定 Python 編程經驗的學習者。具備數學背景,並對微積分和統計有概念理解者更佳。

您將學到什麼


  • 深入實踐深度學習演算法

  • 進一步探索使用 Theano、Caffe、Keras 和 TensorFlow 的深度學習

  • 了解許多實際深度學習實現核心的兩種最強大技術:自編碼器(Auto-Encoders)和限制玻爾茲曼機(Restricted Boltzmann Machines)

  • 深入了解深度信念網絡(Deep Belief Nets)和深度神經網絡(Deep Neural Networks)

  • 發現更多使用 Dropout 和卷積神經網絡(Convolutional Neural Networks)的深度學習演算法

  • 了解設備策略,以便在現實世界中使用深度學習演算法和庫

詳細內容

隨著全球對人工智慧的興趣日益增加,深度學習吸引了大量的公眾關注。每天,深度學習演算法在不同產業中被廣泛使用。

本書將提供有關該主題的所有實用資訊,包括最佳實踐,並使用真實世界的案例。您將學會識別和提取資訊,以提高預測準確性並優化結果。

本書從快速回顧重要的機器學習概念開始,然後直接深入使用 Sci-kit learn 的深度學習原則。接下來,您將學會使用最新的開源庫,如 Theano、Keras、Google 的 TensorFlow 和 H2O。利用本指南揭示模式識別的困難、以更高的準確性擴展數據,並討論深度學習演算法和技術。

無論您是想深入了解深度學習,還是想探索如何更好地利用這項強大技術,您都能在書中找到所需的一切。

風格與方法

《Python 機器學習實例》採用實踐導向的方法。它通過真實世界的專案引導您了解 Python 的關鍵要素及其強大的機器學習庫。