Advanced Machine Learning with Python (Paperback)
暫譯: 進階機器學習與 Python (平裝本)
John Hearty
- 出版商: Packt Publishing
- 出版日期: 2016-07-28
- 售價: $2,000
- 貴賓價: 9.5 折 $1,900
- 語言: 英文
- 頁數: 278
- 裝訂: Paperback
- ISBN: 1784398632
- ISBN-13: 9781784398637
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
Python 高級機器學習 (Advanced Machine Learning with Python) (簡中版)
買這商品的人也買了...
-
$1,190$1,166 -
$299Python Power!: The Comprehensive Guide
-
$4,770$4,532 -
$1,019Digital Signal Processing: A Computer-Based Approach, 4/e (IE-Paperback)
-
$4,530$4,304 -
$1,045$990 -
$960Mastering Predictive Analytics with Python (Paperback)
-
$2,980$2,831 -
$1,980$1,881 -
$1,617Deep Learning (Hardcover)
-
$2,200$2,090 -
$2,208Deep Learning with Python: A Hands-on Introduction
-
$2,400$2,280 -
$590$460 -
$749Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (Paperback)
-
$825Python Machine Learning By Example
-
$390$257 -
$580$458 -
$1,880$1,786 -
$1,584Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence (Undergraduate Topics in Computer Science)
-
$1,170$1,112 -
$1,650$1,617 -
$1,250$1,188 -
$1,830$1,739 -
$880$695
相關主題
商品描述
Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python
About This Book
- Resolve complex machine learning problems and explore deep learning
- Learn to use Python code for implementing a range of machine learning algorithms and techniques
- A practical tutorial that tackles real-world computing problems through a rigorous and effective approach
Who This Book Is For
This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you!
Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful.
What You Will Learn
- Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms
- Apply your new found skills to solve real problems, through clearly-explained code for every technique and test
- Automate large sets of complex data and overcome time-consuming practical challenges
- Improve the accuracy of models and your existing input data using powerful feature engineering techniques
- Use multiple learning techniques together to improve the consistency of results
- Understand the hidden structure of datasets using a range of unsupervised techniques
- Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach
- Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together
In Detail
Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data.
The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce.
This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano.
By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering.
Style and approach
This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.
商品描述(中文翻譯)
透過掌握尖端的機器學習技術,解決具有挑戰性的資料科學問題
本書介紹
- 解決複雜的機器學習問題並探索深度學習
- 學習使用 Python 代碼實現各種機器學習算法和技術
- 一個實用的教程,通過嚴謹且有效的方法解決現實世界的計算問題
本書適合誰
本書適合希望透過接觸一些最新的資料科學趨勢來增強現有技能的 Python 開發者、分析師或資料科學家。如果你曾考慮過建立自己的圖像或文本標記解決方案,或參加 Kaggle 比賽等,本書就是為你而寫的!
具備 Python 的先前經驗以及一些機器學習核心概念的基礎知識將會有所幫助。
你將學到什麼
- 通過獲得對尖端深度學習算法的實踐和理論理解,與頂尖資料科學家競爭
- 應用你新獲得的技能解決實際問題,通過每個技術和測試的清晰代碼解釋
- 自動化大量複雜數據,克服耗時的實際挑戰
- 使用強大的特徵工程技術提高模型的準確性和現有輸入數據的質量
- 結合多種學習技術以提高結果的一致性
- 使用一系列無監督技術理解數據集的隱藏結構
- 深入了解專家如何以有效、迭代和以驗證為重點的方法解決具有挑戰性的數據問題
- 通過使用強大的集成技術進一步提高你的深度學習模型的有效性,將多個模型結合在一起
詳細內容
本書旨在帶領你參觀當今頂尖資料科學家使用的最相關和最強大的機器學習技術,這正是你需要的,以充分發揮你的 Python 算法的潛力。清晰的範例和詳細的代碼範本展示了深度學習技術、半監督學習等,並且都與包括圖像、音樂、文本和金融數據在內的現實世界應用相結合。
本書涵蓋的機器學習技術位於商業實踐的最前沿。它們首次適用於圖像識別、自然語言處理(NLP)和網頁搜索、計算創意以及商業/金融數據建模等情境。深度學習算法和模型集成在頂尖科技和數位公司中被資料科學家使用,但成功應用這些技術所需的技能雖然需求高,但仍然稀缺。
本書旨在帶領讀者參觀最相關和最強大的機器學習技術。清晰的技術運作描述和詳細的代碼範例展示了深度學習技術、半監督學習等在現實世界應用中的運用。我們還將學習 NumPy 和 Theano。
在本書結束時,你將學到一套先進的機器學習技術,並獲得一系列強大的特徵選擇和特徵工程技能。
風格與方法
本書專注於澄清複雜算法背後的理論和代碼,使其實用、可用且易於理解。每個主題都以現實世界的應用進行描述,提供廣泛的背景覆蓋和詳細的指導。