Julia for Data Science
暫譯: Julia 數據科學入門
Anshul Joshi
- 出版商: Packt Publishing
- 出版日期: 2016-09-30
- 售價: $2,210
- 貴賓價: 9.5 折 $2,100
- 語言: 英文
- 頁數: 348
- 裝訂: Paperback
- ISBN: 1785289691
- ISBN-13: 9781785289699
-
相關分類:
程式語言、Data Science
海外代購書籍(需單獨結帳)
商品描述
Key Features
- An in-depth exploration of Julia's growing ecosystem of packages
- Work with the most powerful open-source libraries for deep learning, data wrangling, and data visualization
- Learn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data sets
Book Description
Julia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century).
This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game.
This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations.
You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning.
This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia.
What you will learn
- Apply statistical models in Julia for data-driven decisions
- Understanding the process of data munging and data preparation using Julia
- Explore techniques to visualize data using Julia and D3 based packages
- Using Julia to create self-learning systems using cutting edge machine learning algorithms
- Create supervised and unsupervised machine learning systems using Julia. Also, explore ensemble models
- Build a recommendation engine in Julia
- Dive into Julia’s deep learning framework and build a system using Mocha.jl
About the Author
Anshul Joshi is a data science professional with more than 2 years of experience primarily in data munging, recommendation systems, predictive modeling, and distributed computing. He is a deep learning and AI enthusiast. Most of the time, he can be caught exploring GitHub or trying anything new on which he can get his hands on. He blogs on anshuljoshi.xyz.
Table of Contents
- The Groundwork – Julia's Environment
- Data Munging
- Data Exploration
- Deep Dive into Inferential Statistics
- Making Sense of Data Using Visualization
- Supervised Machine Learning
- Unsupervised Machine Learning
- Creating Ensemble Models
- Time Series
- Collaborative Filtering and Recommendation System
- Introduction to Deep Learning
商品描述(中文翻譯)
#### 主要特點
- 深入探索 Julia 不斷增長的套件生態系統
- 使用最強大的開源庫進行深度學習、數據處理和數據可視化
- 使用 Mocha.jl 學習深度學習,為大型數據集的數據分析提供速度和高效能
#### 書籍描述
Julia 是一種快速且高效能的語言,完美適合數據科學,擁有成熟的套件生態系統,並且現在功能已經完整。它是數據科學從業者的良好工具。哈佛商業評論曾有一篇著名的文章指出,數據科學家是21世紀最性感的工作。(https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century)
本書將幫助您熟悉 Julia 的豐富生態系統,這個生態系統不斷演變,讓您能夠保持競爭力。
本書包含數據科學的基本要素,並提供高層次的進階統計和技術概述。您將深入研究,通過執行推論統計來生成見解,並使用數據挖掘揭示隱藏的模式和趨勢。本書涵蓋了統計學和機器學習的實用內容。您將獲得在 Julia 中構建統計模型和機器學習系統的知識,並創建吸引人的可視化。
接著,您將深入了解 Julia 中的深度學習世界,並理解框架 Mocha.jl,通過它您可以創建人工神經網絡並實現深度學習。
本書針對現實世界數據科學問題的挑戰,包括數據清理、數據準備、推論統計、統計建模、構建高效能機器學習系統以及使用 Julia 創建有效的可視化。
#### 您將學到的內容
- 在 Julia 中應用統計模型以進行數據驅動的決策
- 理解使用 Julia 進行數據處理和數據準備的過程
- 探索使用 Julia 和基於 D3 的套件可視化數據的技術
- 使用 Julia 創建自學系統,利用尖端的機器學習算法
- 使用 Julia 創建監督式和非監督式機器學習系統,並探索集成模型
- 在 Julia 中構建推薦引擎
- 深入了解 Julia 的深度學習框架,並使用 Mocha.jl 構建系統
#### 關於作者
**Anshul Joshi** 是一位數據科學專業人士,擁有超過兩年的經驗,主要專注於數據處理、推薦系統、預測建模和分散式計算。他是深度學習和人工智慧的愛好者。大部分時間,他都在探索 GitHub 或嘗試任何他能接觸到的新事物。他在 anshuljoshi.xyz 上寫博客。
#### 目錄
1. 基礎工作 – Julia 的環境
2. 數據處理
3. 數據探索
4. 深入推論統計
5. 使用可視化理解數據
6. 監督式機器學習
7. 非監督式機器學習
8. 創建集成模型
9. 時間序列
10. 協同過濾和推薦系統
11. 深度學習簡介