Python Machine Learning Blueprints: Put your machine learning concepts to the test by developing real-world smart projects, 2/e (Paperback)
暫譯: Python 機器學習藍圖:透過開發實際智慧專案來驗證您的機器學習概念,第二版 (平裝本)
Alexander Combs, Michael Roman
- 出版商: Packt Publishing
- 出版日期: 2019-01-31
- 定價: $1,760
- 售價: 9.0 折 $1,584
- 語言: 英文
- 頁數: 378
- 裝訂: Paperback
- ISBN: 1788994175
- ISBN-13: 9781788994170
-
相關分類:
Python、程式語言、Machine Learning
立即出貨 (庫存=1)
商品描述
Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras
Key Features
- Get to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and Keras
- Implement advanced concepts and popular machine learning algorithms in real-world projects
- Build analytics, computer vision, and neural network projects
Book Description
Machine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects.
The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks.
By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects.
What you will learn
- Understand the Python data science stack and commonly used algorithms
- Build a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window
- Understand NLP concepts by creating a custom news feed
- Create applications that will recommend GitHub repositories based on ones you've starred, watched, or forked
- Gain the skills to build a chatbot from scratch using PySpark
- Develop a market-prediction app using stock data
- Delve into advanced concepts such as computer vision, neural networks, and deep learning
Who this book is for
This book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.
Table of Contents
- The Python Machine Learning Ecosystem
- Build an App to Find Underpriced Apartments
- Build an App to Find Cheap Airfares
- Forecast the IPO Market Using Logistic Regression
- Create a Custom Newsfeed
- Predict whether Your Content Will Go Viral
- Use Machine Learning to Forecast the Stock Market
- Classifying Images with Convolutional Neural Networks
- Building a Chatbot
- Build a Recommendation Engine
- What's next?
商品描述(中文翻譯)
**發現一種基於專案的方法來掌握機器學習概念,通過使用如 scikit-learn、TensorFlow 和 Keras 等庫將其應用於日常問題**
#### 主要特點
- 熟悉 Python 的機器學習庫,包括 scikit-learn、TensorFlow 和 Keras
- 在實際專案中實現先進概念和流行的機器學習演算法
- 建立分析、計算機視覺和神經網絡專案
#### 書籍描述
機器學習正在改變我們理解和與周圍世界互動的方式。本書是您將知識和技能付諸實踐的完美指南,並利用 Python 生態系統涵蓋機器學習的關鍵領域。本書的第二版涵蓋了來自 Python 生態系統的一系列庫,包括 TensorFlow 和 Keras,以幫助您實現實際的機器學習專案。
本書首先為您提供 Python 機器學習的概述。在複雜數據集和優化技術的幫助下,您將了解如何將先進概念和流行的機器學習演算法應用於實際專案。接下來,您將涵蓋來自預測分析等領域的專案,以分析股市和為 GitHub 倉庫建立推薦系統。此外,您還將在自然語言處理(NLP)領域的專案中,使用如 scikit-learn、TensorFlow 和 Keras 等框架創建自定義新聞推送。隨後,您將學習如何構建一個先進的聊天機器人,並使用 PySpark 擴展功能。在結尾章節中,您可以期待深入了解深度學習,甚至創建一個使用計算機視覺和神經網絡的應用程式。
到本書結束時,您將能夠無縫分析數據,並通過您的專案產生強大的影響。
#### 您將學到什麼
- 理解 Python 數據科學堆疊和常用演算法
- 建立一個模型來預測首次公開募股(IPO)在初始離散交易窗口的表現
- 通過創建自定義新聞推送來理解 NLP 概念
- 創建應用程式,根據您已標星、關注或分叉的 GitHub 倉庫推薦其他倉庫
- 獲得從零開始使用 PySpark 構建聊天機器人的技能
- 使用股票數據開發市場預測應用程式
- 深入了解計算機視覺、神經網絡和深度學習等先進概念
#### 本書適合誰
本書適合機器學習從業者、數據科學家和深度學習愛好者,旨在通過構建實際專案將其機器學習技能提升到更高的水平。這本中級指南將幫助您實現來自 Python 生態系統的庫,以構建各種針對不同機器學習領域的專案。具備 Python 程式設計和機器學習概念的知識將會有所幫助。
#### 目錄
1. Python 機器學習生態系統
2. 建立一個尋找低價公寓的應用程式
3. 建立一個尋找便宜機票的應用程式
4. 使用邏輯回歸預測 IPO 市場
5. 創建自定義新聞推送
6. 預測您的內容是否會病毒式傳播
7. 使用機器學習預測股市
8. 使用卷積神經網絡進行圖像分類
9. 建立聊天機器人
10. 建立推薦引擎
11. 接下來是什麼?