Mastering Python for Finance, 2/e
暫譯: 精通 Python 財務應用,第二版

Weiming, James Ma

買這商品的人也買了...

商品描述

Take your financial skills to the next level by mastering cutting-edge mathematical and statistical financial applications

Key Features

  • Explore advanced financial models used by the industry and ways of solving them using Python
  • Build state-of-the-art infrastructure for modeling, visualization, trading, and more
  • Empower your financial applications by applying machine learning and deep learning

Book Description

The second edition of Mastering Python for Finance will guide you through carrying out complex financial calculations practiced in the industry of finance by using next-generation methodologies. You will master the Python ecosystem by leveraging publicly available tools to successfully perform research studies and modeling, and learn to manage risks with the help of advanced examples.

You will start by setting up your Jupyter notebook to implement the tasks throughout the book. You will learn to make efficient and powerful data-driven financial decisions using popular libraries such as TensorFlow, Keras, Numpy, SciPy, and sklearn. You will also learn how to build financial applications by mastering concepts such as stocks, options, interest rates and their derivatives, and risk analytics using computational methods. With these foundations, you will learn to apply statistical analysis to time series data, and understand how time series data is useful for implementing an event-driven backtesting system and for working with high-frequency data in building an algorithmic trading platform. Finally, you will explore machine learning and deep learning techniques that are applied in finance.

By the end of this book, you will be able to apply Python to different paradigms in the financial industry and perform efficient data analysis.

What you will learn

  • Solve linear and nonlinear models representing various financial problems
  • Perform principal component analysis on the DOW index and its components
  • Analyze, predict, and forecast stationary and non-stationary time series processes
  • Create an event-driven backtesting tool and measure your strategies
  • Build a high-frequency algorithmic trading platform with Python
  • Replicate the CBOT VIX index with SPX options for studying VIX-based strategies
  • Perform regression-based and classification-based machine learning tasks for prediction
  • Use TensorFlow and Keras in deep learning neural network architecture

商品描述(中文翻譯)

透過掌握尖端的數學和統計金融應用,將您的財務技能提升到新境界

主要特色


  • 探索業界使用的先進金融模型及其使用 Python 解決的方法

  • 建立最先進的基礎設施以進行建模、視覺化、交易等

  • 透過應用機器學習和深度學習來增強您的金融應用

書籍描述

《Mastering Python for Finance》的第二版將指導您使用下一代方法進行金融行業中複雜的財務計算。您將通過利用公開可用的工具來掌握 Python 生態系統,成功執行研究和建模,並學習如何在高級範例的幫助下管理風險。

您將從設置 Jupyter notebook 開始,以實現本書中的任務。您將學會使用流行的庫(如 TensorFlow、Keras、Numpy、SciPy 和 sklearn)做出高效且強大的數據驅動財務決策。您還將學習如何通過掌握股票、期權、利率及其衍生品和風險分析等概念來構建金融應用,並使用計算方法進行分析。基於這些基礎,您將學會將統計分析應用於時間序列數據,並理解時間序列數據如何用於實施事件驅動的回測系統,以及在構建算法交易平台時處理高頻數據。最後,您將探索在金融領域應用的機器學習和深度學習技術。

在本書結束時,您將能夠將 Python 應用於金融行業的不同範式,並執行高效的數據分析。

您將學到的內容


  • 解決代表各種金融問題的線性和非線性模型

  • 對 DOW 指數及其組成部分執行主成分分析

  • 分析、預測和預測平穩和非平穩的時間序列過程

  • 創建事件驅動的回測工具並衡量您的策略

  • 使用 Python 構建高頻算法交易平台

  • 使用 SPX 期權複製 CBOT VIX 指數以研究基於 VIX 的策略

  • 執行基於回歸和分類的機器學習任務以進行預測

  • 在深度學習神經網絡架構中使用 TensorFlow 和 Keras

最後瀏覽商品 (1)