Python Machine Learning, 2/e (Paperback)
暫譯: Python 機器學習(第二版)
Sebastian Raschka, Vahid Mirjalili
- 出版商: Packt Publishing
- 出版日期: 2017-09-15
- 定價: $1,360
- 售價: 8.0 折 $1,088
- 語言: 英文
- 頁數: 622
- 裝訂: Paperback
- ISBN: 1787125939
- ISBN-13: 9781787125933
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
Python 機器學習, 2/e (Python Machine Learning, 2/e) (繁中版)
Python 機器學習, 2/e (簡中版)(Python Machine Learning, 2/e) (簡中版)
-
其他版本:
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3/e (Paperback)
買這商品的人也買了...
-
$1,980$1,881 -
$792Agile Data Science: Building Data Analytics Applications with Hadoop (Paperback)
-
$580$458 -
$1,758OpenGL ES 3.0 Programming Guide, 2/e (Paperback)
-
$2,720$2,584 -
$2,400$2,280 -
$1,805C: How to Program, 8/e (IE-Paperback)
-
$980$774 -
$2,641OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9/e (Paperback)
-
$1,962Introduction to Machine Learning with Python: A Guide for Data Scientists (Paperback)
-
$1,617Deep Learning (Hardcover)
-
$2,410$2,290 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$590$460 -
$595Hands-On Deep Learning with TensorFlow
-
$1,830$1,739 -
$1,890$1,796 -
$1,840Pro Deep Learning with TensorFlow: A Mathematical Approach to Advanced Artificial Intelligence in Python
-
$650$507 -
$1,660$1,577 -
$1,188Deep Reinforcement Learning Hands-On
-
$2,000$1,900 -
$880$695 -
$680$537 -
$650$553
相關主題
商品描述
Key Features
- Second edition of the bestselling book on Machine Learning
- A practical approach to the frameworks of data science, machine learning, and deep learning
- Use the most powerful Python libraries to implement machine learning and deep learning
- Learn best practices to improve and optimize your machine learning systems and algorithms
Book Description
Machine learning is eating the software world, and now deep learning is extending machine learning. This book is for developers and data scientists who want to master the world of artificial intelligence, with a practical approach to understanding and implementing machine learning, and how to apply the power of deep learning with Python.
This Second Edition of Sebastian Raschka's Python Machine Learning is thoroughly updated to use the most powerful and modern Python open-source libraries, so that you can understand and work at the cutting-edge of machine learning, neural networks, and deep learning.
Written for developers and data scientists who want to create practical machine learning code, the authors have extended and modernized this best-selling book, to now include the influential TensorFlow library, and the Keras Python neural network library. The Scikit-learn code has also been fully updated to include recent innovations. The result is a new edition of this classic book at the cutting edge of machine learning.
Readers new to machine learning will find this classic book offers the practical knowledge and rich techniques they need to create and contribute to machine learning, deep learning, and modern data analysis. Raschka and Mirjalili introduce you to machine learning and deep learning algorithms, and show you how to apply them to practical industry challenges. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world .
Readers of the first edition will be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. Readers can learn and work with TensorFlow more deeply than ever before, and essential coverage of the Keras neural network library has been added, along with the most recent updates to Scikit-learn. Raschka and Mirjalili have updated this book to meet the most modern areas of machine learning, to give developers and data scientists a fresh and practical Python journey into machine learning.
What you will learn
- Use the key frameworks of data science, machine learning, and deep learning
- Ask new questions of your data through machine learning models and neural networks
- Work with the most powerful Python open-source libraries in machine learning
- Build deep learning applications using Keras and TensorFlow
- Embed your machine learning model in accessible web applications
- Predict continuous target outcomes using regression analysis
- Uncover hidden patterns and structures in data with clustering
- Analyze images using deep learning techniques
- Use sentiment analysis to delve deeper into textual and social media data
商品描述(中文翻譯)
**主要特點**
- 熱賣書籍《機器學習》的第二版
- 實用的方法來理解數據科學、機器學習和深度學習的框架
- 使用最強大的 Python 函式庫來實現機器學習和深度學習
- 學習最佳實踐以改善和優化您的機器學習系統和算法
**書籍描述**
機器學習正在改變軟體世界,而深度學習則在擴展機器學習。本書適合希望掌握人工智慧領域的開發者和數據科學家,提供實用的方法來理解和實施機器學習,以及如何使用 Python 應用深度學習的力量。
這本由 Sebastian Raschka 所著的《Python 機器學習》第二版已全面更新,使用最強大和現代的 Python 開源函式庫,讓您能夠理解並在機器學習、神經網絡和深度學習的前沿工作。
本書針對希望創建實用機器學習代碼的開發者和數據科學家,作者擴展並現代化了這本暢銷書,現在包括了影響力巨大的 TensorFlow 函式庫和 Keras Python 神經網絡函式庫。Scikit-learn 的代碼也已全面更新,以包含最近的創新。結果是這本經典書籍的新版本,位於機器學習的最前沿。
對於機器學習新手來說,這本經典書籍提供了他們創建和貢獻於機器學習、深度學習和現代數據分析所需的實用知識和豐富技術。Raschka 和 Mirjalili 介紹了機器學習和深度學習算法,並展示了如何將它們應用於實際的行業挑戰。到書籍結束時,您將準備好迎接當今世界的新數據分析機會。
第一版的讀者將高興地發現,這一版在經典思想和現代見解之間取得了新的平衡。每一章都經過了嚴格的更新,並新增了關鍵技術的章節。讀者可以比以往更深入地學習和使用 TensorFlow,並增加了對 Keras 神經網絡函式庫的基本覆蓋,還有對 Scikit-learn 的最新更新。Raschka 和 Mirjalili 更新了這本書,以符合機器學習的最新領域,為開發者和數據科學家提供了一次全新的實用 Python 機器學習之旅。
**您將學到的內容**
- 使用數據科學、機器學習和深度學習的關鍵框架
- 通過機器學習模型和神經網絡對數據提出新問題
- 使用最強大的 Python 開源函式庫進行機器學習
- 使用 Keras 和 TensorFlow 構建深度學習應用
- 將您的機器學習模型嵌入可訪問的網頁應用中
- 使用回歸分析預測連續目標結果
- 通過聚類發現數據中的隱藏模式和結構
- 使用深度學習技術分析圖像
- 使用情感分析深入探討文本和社交媒體數據