Spark for Data Science Cookbook
暫譯: Spark 數據科學食譜
Padma Priya Chitturi
- 出版商: Packt Publishing
- 出版日期: 2016-12-23
- 售價: $2,000
- 貴賓價: 9.5 折 $1,900
- 語言: 英文
- 頁數: 358
- 裝訂: Paperback
- ISBN: 1785880101
- ISBN-13: 9781785880100
-
相關分類:
Spark、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Key Features
- Use Apache Spark for data processing with these hands-on recipes
- Implement end-to-end, large-scale data analysis better than ever before
- Work with powerful libraries such as MLLib, SciPy, NumPy, and Pandas to gain insights from your data
Book Description
Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark’s selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease.
This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark’s data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work.
What you will learn
- Explore the topics of data mining, text mining, Natural Language Processing, information retrieval, and machine learning.
- Solve real-world analytical problems with large data sets.
- Address data science challenges with analytical tools on a distributed system like Spark (apt for iterative algorithms), which offers in-memory processing and more flexibility for data analysis at scale.
- Get hands-on experience with algorithms like Classification, regression, and recommendation on real datasets using Spark MLLib package.
- Learn about numerical and scientific computing using NumPy and SciPy on Spark.
- Use Predictive Model Markup Language (PMML) in Spark for statistical data mining models.
About the Author
Padma Priya Chitturi is Analytics Lead at Fractal Analytics Pvt Ltd and has over five years of experience in Big Data processing. Currently, she is part of capability development at Fractal and responsible for solution development for analytical problems across multiple business domains at large scale. Prior to this, she worked for an Airlines product on a real-time processing platform serving one million user requests/sec at Amadeus Software Labs. She has worked on realizing large-scale deep networks (Jeffrey dean's work in Google brain) for image classification on the big data platform Spark. She works closely with Big Data technologies such as Spark, Storm, Cassandra and Hadoop. She was an open source contributor to Apache Storm.
Table of Contents
- Big Data Analytics with Spark
- Tricky Statistics with Spark
- Data Analysis with Spark
- Clustering, Classification, and Regression
- Working with Spark MLlib
- NLP with Spark
- Working with Sparkling Water - H2O
- Data Visualization with Spark
- Deep Learning on Spark
- Working with SparkR
商品描述(中文翻譯)
**主要特點**
- 使用 Apache Spark 進行數據處理,搭配這些實作食譜
- 實現端到端的大規模數據分析,效果比以往更佳
- 使用強大的庫,如 MLLib、SciPy、NumPy 和 Pandas,從數據中獲取洞見
**書籍描述**
Spark 已成為數據科學專業人士最有前景的大數據分析引擎。Apache Spark 的真正力量和價值在於其以速度和準確性執行數據科學任務的能力。Spark 的賣點在於它結合了 ETL、批量分析、實時流分析、機器學習、圖形處理和可視化。它使您能夠輕鬆應對原始非結構化數據集所帶來的複雜性。
本指南將幫助您熟悉並自信地使用 Spark 執行數據科學任務。您將學習包括分佈式深度學習、數值計算和可擴展機器學習的實作。您將看到使用 Spark 的數據科學庫(如 MLLib、Pandas、NumPy、SciPy 等)解決數據科學中問題概念的有效解決方案。這些簡單而高效的食譜將向您展示如何實現算法並優化您的工作。
**您將學到的內容**
- 探索數據挖掘、文本挖掘、自然語言處理、信息檢索和機器學習的主題。
- 使用大型數據集解決現實世界的分析問題。
- 使用 Spark 上的分析工具解決數據科學挑戰(適合迭代算法),該工具提供內存處理和更大的數據分析靈活性。
- 使用 Spark MLLib 套件在真實數據集上獲得分類、回歸和推薦等算法的實作經驗。
- 學習在 Spark 上使用 NumPy 和 SciPy 進行數值和科學計算。
- 在 Spark 中使用預測模型標記語言(PMML)進行統計數據挖掘模型。
**關於作者**
**Padma Priya Chitturi** 是 Fractal Analytics Pvt Ltd 的分析主管,擁有超過五年的大數據處理經驗。目前,她是 Fractal 的能力開發團隊的一部分,負責多個業務領域的大規模分析問題解決方案的開發。在此之前,她曾在 Amadeus Software Labs 的一個實時處理平台上為航空產品工作,該平台每秒處理一百萬個用戶請求。她曾在大數據平台 Spark 上實現大規模深度網絡(Jeffrey Dean 在 Google Brain 的工作)進行圖像分類。她與 Spark、Storm、Cassandra 和 Hadoop 等大數據技術密切合作。她曾是 Apache Storm 的開源貢獻者。
**目錄**
1. 使用 Spark 進行大數據分析
2. 使用 Spark 的棘手統計
3. 使用 Spark 的數據分析
4. 聚類、分類和回歸
5. 使用 Spark MLlib
6. 使用 Spark 進行自然語言處理
7. 使用 Sparkling Water - H2O
8. 使用 Spark 進行數據可視化
9. 在 Spark 上的深度學習
10. 使用 SparkR