Applied Learning Algorithms for Intelligent Iot
暫譯: 智能物聯網的應用學習演算法

Chelliah, Pethuru Raj, Sakthivel, Usha, Nagarajan, Susila

  • 出版商: Auerbach Publication
  • 出版日期: 2021-10-29
  • 售價: $5,070
  • 貴賓價: 9.5$4,817
  • 語言: 英文
  • 頁數: 356
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367635941
  • ISBN-13: 9780367635947
  • 相關分類: Algorithms-data-structures物聯網 IoT
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book vividly illustrates all the promising and potential machine learning (ML) and deep learning (DL) algorithms through a host of real-world and real-time business use cases. Machines and devices can be empowered to self-learn and exhibit intelligent behavior. Also, Big Data combined with real-time and runtime data can lead to personalized, prognostic, predictive, and prescriptive insights. This book examines the following topics:

    • Cognitive machines and devices
    • Cyber physical systems (CPS)
    • The Internet of Things (IoT) and industrial use cases
    • Industry 4.0 for smarter manufacturing
    • Predictive and prescriptive insights for smarter systems
    • Machine vision and intelligence
    • Natural interfaces
    • K-means clustering algorithm
    • Support vector machine (SVM) algorithm
    • A priori algorithms
    • Linear and logistic regression

Applied Learning Algorithms for Intelligent IoT clearly articulates ML and DL algorithms that can be used to unearth predictive and prescriptive insights out of Big Data. Transforming raw data into information and relevant knowledge is gaining prominence with the availability of data processing and mining, analytics algorithms, platforms, frameworks, and other accelerators discussed in the book. Now, with the emergence of machine learning algorithms, the field of data analytics is bound to reach new heights.

This book will serve as a comprehensive guide for AI researchers, faculty members, and IT professionals. Every chapter will discuss one ML algorithm, its origin, challenges, and benefits, as well as a sample industry use case for explaining the algorithm in detail. The book's detailed and deeper dive into ML and DL algorithms using a practical use case can foster innovative research.

商品描述(中文翻譯)

這本書生動地展示了所有有前景和潛力的機器學習(ML)和深度學習(DL)演算法,通過一系列真實世界和即時商業案例。機器和設備可以被賦予自我學習的能力,並展現智能行為。此外,結合即時和運行時數據的大數據可以導致個性化、預測性、預知性和處方性見解。本書探討以下主題:

- 認知機器和設備
- 網路物聯網(IoT)和工業應用案例
- 工業4.0以實現更智能的製造
- 更智能系統的預測性和處方性見解
- 機器視覺和智能
- 自然介面
- K-means 聚類演算法
- 支持向量機(SVM)演算法
- 先驗演算法
- 線性和邏輯回歸

《應用學習演算法於智能物聯網》清楚地闡述了可以用來從大數據中挖掘預測性和處方性見解的ML和DL演算法。隨著數據處理和挖掘、分析演算法、平台、框架及書中討論的其他加速器的可用性,將原始數據轉化為信息和相關知識變得越來越重要。現在,隨著機器學習演算法的出現,數據分析領域必將達到新的高度。

這本書將作為AI研究人員、教職員和IT專業人士的綜合指南。每一章將討論一種ML演算法,其起源、挑戰和好處,以及一個示範行業應用案例,以詳細解釋該演算法。書中對ML和DL演算法的詳細深入探討,結合實際應用案例,可以促進創新研究。

作者簡介

Dr. Pethuru Raj is Chief Architect and Vice President of the Site Reliability Engineering (SRE) Division of Reliance JioInfocomm. Ltd., Bangalore, India.

Dr. Usha Sakthivel is the dean of research, Department of Computer Engineering, RajaRajeswari College of Engineering, Bangalore, India.

Dr. Susila N is a professor and head of the Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, India.

作者簡介(中文翻譯)

Dr. Pethuru Raj 是印度班加羅爾 Reliance JioInfocomm. Ltd. 的網站可靠性工程 (SRE) 部門的首席架構師及副總裁。

Dr. Usha Sakthivel 是印度班加羅爾 RajaRajeswari 工程學院計算機工程系的研究院院長。

Dr. Susila N 是印度科印巴多 Sri Krishna 工程與技術學院資訊技術系的教授及系主任。

最後瀏覽商品 (1)